Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 72(2): 345-359, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35428659

RESUMO

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Aminoácido Oxirredutases/genética , Neoplasias Pancreáticas
2.
Nat Commun ; 11(1): 5265, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067432

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7-9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Evasão da Resposta Imune , Células-Tronco Neoplásicas/imunologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
3.
Oncogene ; 38(27): 5469-5485, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936462

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an inherently chemoresistant tumor. Chemotherapy leads to apoptosis of cancer cells, and in previous studies we have shown that tumor-associated macrophage (TAM) infiltration increases following chemotherapy in PDAC. Since one of the main functions of macrophages is to eliminate apoptotic cells, we hypothesized that TAMs phagocytose chemotherapy-induced apoptotic cells and secrete factors, which favor PDAC chemoresistance. To test this hypothesis, primary human PDAC cultures were treated with conditioned media (CM) from monocyte-derived macrophage cultures incubated with apoptotic PDAC cells (MØApopCM). MØApopCM pretreatment rendered naïve PDAC cells resistant to Gemcitabine- or Abraxane-induced apoptosis. Proteomic analysis of MØApopCM identified YWHAZ/14-3-3 protein zeta/delta (14-3-3ζ), a major regulator of apoptotic cellular pathways, as a potential mediator of chemoresistance, which was subsequently validated in patient transcriptional datasets, serum samples from PDAC patients and using recombinant 14-3-3ζ and inhibitors thereof. Moreover, in mice bearing orthotopic PDAC tumors, the antitumor potential of Gemcitabine was significantly enhanced by elimination of TAMs using clodronate liposomes or by pharmacological inhibition of the Axl receptor tyrosine kinase, a 14-3-3ζ interacting partner. These data highlight a unique regulatory mechanism by which chemotherapy-induced apoptosis acts as a switch to initiate a protumor/antiapoptotic mechanism in PDAC via 14-3-3ζ/Axl signaling, leading to phosphorylation of Akt and activation of cellular prosurvival mechanisms. The data presented therefore challenge the idea that apoptosis of tumor cells is therapeutically beneficial, at least when immune sensor cells, such as macrophages, are present.


Assuntos
Proteínas 14-3-3/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Macrófagos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Apoptose , Carcinoma Ductal Pancreático/patologia , Polaridade Celular , Proliferação de Células , Meios de Cultivo Condicionados , Desoxicitidina/uso terapêutico , Humanos , Macrófagos/citologia , Camundongos , Neoplasias Pancreáticas/patologia , Gencitabina , Receptor Tirosina Quinase Axl
4.
J Control Release ; 294: 154-164, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30529724

RESUMO

So far, the success of anticancer nanomedicines has been moderate due to their lack of adequate targeting properties and/or to their difficulties for penetrating tumors. Here we report a multifunctional drug nanocarrier consisting of hyaluronic acid nanocapsules conjugated with the tumor homing peptide tLyp1, which exhibits both, dual targeting properties (to the tumor and to the lymphatics), and enhanced tumor penetration. Data from a 3D co-culture in vitro model showed the capacity of these nanocapsules to interact with the NRP1 receptors over-expressed in cancer cells. The targeting capacity of the nanocapsules was evidenced in orthotopic lung cancer-bearing mice, using docetaxel as a standard drug. The results showed a dramatic accumulation of docetaxel in the tumor (37-fold the one achieved with Taxotere®). This biodistribution profile correlated with the high efficacy shown in terms of tumor growth regression and drastic reduction of metastasis in the lymphatics. When efficacy was validated in a pancreatic patient-derived tumor, the nanocapsule's activity was comparable to that of a dose ten times higher of Abraxane®. Multi-functionality was found to be the key to the success of this new therapy.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Portadores de Fármacos/administração & dosagem , Ácido Hialurônico/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Antineoplásicos/farmacocinética , Técnicas de Cocultura , Docetaxel/farmacocinética , Portadores de Fármacos/farmacocinética , Feminino , Humanos , Ácido Hialurônico/farmacocinética , Células Jurkat , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Distribuição Tecidual
5.
Biofabrication ; 10(3): 035004, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29595143

RESUMO

The tumor microenvironment (TME) is gaining increasing attention in oncology, as it is recognized to be functionally important during tumor development and progression. Tumors are heterogeneous tissues that, in addition to tumor cells, contain tumor-associated cell types such as immune cells, fibroblasts, and endothelial cells. These other cells, together with the specific extracellular matrix (ECM), create a permissive environment for tumor growth. While the influence of tumor-infiltrating cells and mechanical properties of the ECM in tumor invasion and progression have been studied separately, their interaction within the complex TME and the epithelial -to-mesenchymal transition (EMT) is still unclear. In this work, we develop a 3D co-culture model of lung adenocarcinoma cells and macrophages in an interpenetrating network hydrogel, to investigate the influence of the macrophage phenotype and ECM stiffness in the induction of EMT. Rising ECM stiffness increases both tumor cell proliferation and invasiveness. The presence of tumor-associated macrophages and the ECM stiffness jointly contribute to an invasive phenotype, and modulate the expression of key EMT-related markers. Overall, these findings support the utility of in vitro 3D cancer models that allow one to study interactions among key components of the TME.


Assuntos
Adenocarcinoma/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Macrófagos/fisiologia , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Macrófagos/citologia , Fenômenos Mecânicos
6.
Cancers (Basel) ; 10(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373514

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is the 4th most frequent cause of cancer-related death worldwide, primarily due to the inherent chemoresistant nature and metastatic capacity of this tumor. The latter is believed to be mainly due to the existence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs), which have been shown to have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. As such, current treatments for the majority of PDAC patients are not effective and do not significantly impact overall patient survival (<7 months) as they do not affect the pancreatic CSC (PaCSC) population. In this context, it is important to highlight the need to better understand the characteristics of the PaCSC population in order to develop new therapies to target these cells. In this review, we will provide the latest updates and knowledge on the inherent characteristics of PaCSCs, particularly their unique biological properties including chemoresistance, epithelial to mesenchymal transition, plasticity, metabolism and autophagy.

7.
Sci Rep ; 6: 37820, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901069

RESUMO

Knowledge on the molecular mechanisms underlying metastasis colonization in Non-Small Cell Lung Cancer (NSCLC) remains incomplete. A complete overview integrating driver mutations, primary tumour heterogeneity and overt metastasis lacks the dynamic contribution of disseminating metastatic cells due to the inaccessibility to the molecular profiling of Circulating Tumour Cells (CTCs). By combining immunoisolation and whole genome amplification, we performed a global gene expression analysis of EpCAM positive CTCs from advanced NSCLC patients. We identified an EpCAM+ CTC-specific expression profile in NSCLC patients mostly associated with cellular movement, cell adhesion and cell-to-cell signalling mediated by PI3K/AKT, ERK1/2 and NF-kB pathways. NOTCH1 emerged as a driver connecting active signalling pathways, with a reduced number of related candidate genes (NOTCH1, PTP4A3, LGALS3 and ITGB3) being further validated by RT-qPCR on an independent cohort of NSCLC patients. In addition, these markers demonstrated high prognostic value for Progression-Free Survival (PFS). In conclusion, molecular characterization of EpCAM+ CTCs from advanced NSCLC patients provided with highly specific biomarkers with potential applicability as a "liquid biopsy" for monitoring of NSCLC patients and confirmed NOTCH1 as a potential therapeutic target to block lung cancer dissemination.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Células Neoplásicas Circulantes/metabolismo , Receptor Notch1/metabolismo , Células A549 , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Transdução de Sinais/fisiologia
8.
J Nanobiotechnology ; 14(1): 51, 2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27339609

RESUMO

BACKGROUND: Metastases are the most common reason of cancer death in patients with solid tumors. Lymph nodes, once invaded by tumor cells, act as reservoirs before cancer cells spread to distant organs. To address the limited access of intravenously infused chemotherapeutics to the lymph nodes, we have developed PEGylated polyglutamic acid nanocapsules (PGA-PEG NCs), which have shown ability to reach and to accumulate in the lymphatic nodes and could therefore act as nanotransporters. Once in the lymphatics, the idea is that these nanocapsules would selectively interact with cancer cells, while avoiding non-specific interactions with immune cells and the appearance of subsequent immunotoxicity. RESULTS: The potential of the PGA-PEG NCs, with a mean size of 100 nm and a negative zeta potential, to selectively reach metastatic cancer cells, has been explored in a novel 3D model that mimics an infiltrated lymph node. Our 3D model, a co-culture of cancer cells and lymphocytes, allows performing experiments under dynamic conditions that simulate the lymphatic flow. After perfusion of the nanocarriers, we observe a selective interaction with the tumor cells. Efficacy studies manifest the need to develop specific therapies addressed to treat metastatic cells that can be in a dormant state. CONCLUSIONS: We provide evidence of the ability of PGA-PEG NCs to selectively interact with the tumor cells in presence of lymphocytes, highlighting their potential in cancer therapeutics. We also state the importance of designing precise in vitro models that allow performing mechanistic assays, to efficiently develop and evaluate specific therapies to confront the formation of metastasis.


Assuntos
Linfonodos/efeitos dos fármacos , Modelos Biológicos , Nanocápsulas/química , Polietilenoglicóis/química , Ácido Poliglutâmico/química , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Carbocianinas/química , Ciclo Celular/efeitos dos fármacos , Técnicas de Cocultura , Docetaxel , Corantes Fluorescentes/química , Humanos , Células Jurkat , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática/patologia , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Reologia , Taxoides/química , Taxoides/farmacologia
9.
PLoS One ; 7(7): e40476, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22811761

RESUMO

Metastatic colorectal cancer (mCRC) relies on the detachment of aggressive malignant cells from the primary tumor into the bloodstream and, concordantly, the presence of these Circulating Tumor Cells (CTC) is associated with a poor prognosis. In this work, the molecular characterization of CTC from mCRC patients was approached, with the aim of understanding their biology and improving their clinical utility in the management of colorectal cancer patients. For this, EpCAM-based immunoisolation of CTC was combined with whole transcriptome amplification and hybridization onto cDNA microarrays. Gene expression data from mCRC patients, once the background of unspecific immunoisolation from a group of controls had been subtracted, resulted in 410 genes that characterized the CTC population. Bioinformatics were used for the biological interpretation of the data, revealing that CTC are characterized by genes related to cell movement and adhesion, cell death and proliferation, and cell signalling and interaction. RTqPCR on an independent series of mCRC patients and controls was used for the validation of a number of genes related to the main cellular functions characterizing the CTC population. Comparison between primary carcinomas and lung and liver metastases further involved the CTC-genes in the promotion of metastasis. Moreover, the correlation of CTC-gene expression with clinical parameters demonstrated detection and prognosis significance. In conclusion, the molecular characterization of CTC from mCRC patients and the identification of diagnostic and prognostic biomarkers represent an innovative and promising approach in the clinical management of this type of patients.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/patologia , Células Neoplásicas Circulantes/metabolismo , Neoplasias Colorretais/diagnóstico , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Transcriptoma
10.
J Cell Mol Med ; 16(10): 2342-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22304365

RESUMO

The accuracy in the diagnosis of metastatic colorectal cancer (mCRC) represents one of the challenges in the clinical management of patients. The detection of circulating tumour cells (CTC) is becoming a promising alternative to current detection techniques, as it focuses on one of the players of the metastatic disease and it should provide with more specific and sensitive detection rates. Here, we describe an improved method of detection of CTC from mCRC patients by combining immune-enrichment, optimal purification of RNA from very low cell numbers, and the selection of accurate PCR probes. As a result, we obtained a logistic model that combines GAPDH and VIL1 normalized to CD45 rendering powerful results in the detection of CTC from mCRC patients (AUROC value 0.8599). We further demonstrated the utility of this model at the clinical setting, as a reliable prognosis tool to determine progression-free survival in mCRC patients. Overall, we developed a strategy that ameliorates the specificity and sensitivity in the detection of CTC, resulting in a robust and promising logistic model for the clinical management of metastatic colorectal cancer patients.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Células Neoplásicas Circulantes/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Células Epiteliais/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Modelos Logísticos , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Mol Cancer Ther ; 10(8): 1357-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21613448

RESUMO

Endometrial cancer is among the three most common cancers in females in industrialized countries. In the majority of cases, the tumor is confined to the uterus at the time of diagnosis and presents a good prognosis. However, after primary surgery, 15% to 20% of these tumors recur and have limited response to systemic therapy. We carried out gene expression profiling of high-risk recurrence endometrial cancers to identify new therapeutic approaches targeting the molecular pathways involved in the acquisition of an aggressive tumor phenotype. A microarray gene-expression analysis on a total of 51 human endometrial carcinomas revealed 77 genes specifically altered in high-risk recurrence tumors (P < 0.001). The bioinformatics analysis of gene-gene interactions and molecular relationships among these genes pointed to a prominent role for TGF-ß1 signaling in the acquisition of an aggressive phenotype. We further showed that TGF-ß1 has a principal role at the initiation of endometrial carcinoma invasion through the promotion of the epithelial to mesenchymal transition that leads to the acquisition of an invasive phenotype in HEC-1A and RL95-2 cells. Impairment of this initial step with SB-431542, a specific TGF-ß1 inhibitor, precluded further persistent endometrial carcinoma invasion. In conclusion, we showed that the characterization of the molecular changes associated with the acquisition of an aggressive phenotype represents a realistic strategy for the rational identification and characterization of new potential therapeutic targets in an effort to improve the clinical management and the outcome of high-risk endometrial cancer patients.


Assuntos
Neoplasias do Endométrio/genética , Fator de Crescimento Transformador beta1/fisiologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Dioxóis/farmacologia , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Fator de Crescimento Epidérmico/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Recidiva , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...