Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 18(3): 3399-3406, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31452820

RESUMO

Discovering the underlying signalling pathways that control cancer cells is crucial for understanding their biology and to develop therapeutic regimens. Thus, the aim of the present study was to determine the effect of Cripto-1 on pathways controlling glioblastoma (GBM) cell function. To this end, changes in protein phosphorylation in cells overexpressing Cripto-1 were analysed using the Kyoto Encyclopedia of Genes and Genomes pathway analysis tool, as well as the Uniprot resource to identify the functions of Cripto-1-dependent phosphorylated proteins. This revealed that proteins affected by Cripto-1 overexpression are involved in multiple signalling pathways. The mitogen-activated protein kinase (MAPK), focal adhesion (FA) and ErbB pathways were found to be enriched by Cripto-1 overexpression with 35, 27 and 24% of pathway proteins phosphorylated, respectively. These pathways control important cellular processes in cancer cells that correlate with the observed functional changes described in earlier studies. More specifically, Cripto-1 may regulate MAPK cellular proliferation and survival pathways by activating epithelial growth factor receptor (EGFR; Ser1070) or fibroblast GFR1 (Tyr654). Its effect on cellular proliferation and survival could be mediated through Src (Tyr418), FA kinase (FAK; Tyr396), p130CAS (Tyr410), c-Jun (Ser63), Paxillin (PXN; Tyr118) and BCL2 (Thr69) of the FA pathway. Cripto-1 may also control cellular motility and invasion by activating Src (Tyr418), FAK (Tyr396) and PXN (Tyr118) of the FA pathway. However, Cripto-1 regulation of cellular invasion and migration might be not limited to the FA pathway, it may also control these cellular mechanisms through signalling via EGFR (Ser1070)/Her2 (Tyr877) to mediate the Src (Tyr418) and FAK (Tyr396) cascade activation of the ErbB signalling pathway. Angiogenesis could be mediated by Cripto-1 by activating c-Jun (Ser63) through EGFR (Ser1070)/Her2 (Tyr877) of the ErbB pathway. To conclude, the present study has augmented and enriched our current knowledge on the crucial roles that Cripto-1 may play in controlling different cellular mechanisms in GBM cells.

2.
Oncol Lett ; 18(2): 1657-1668, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31423233

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by suppressing the target mRNA and inhibiting translation in order to regulate multiple biological processes. miRNAs play important roles as oncogenes or tumor suppressors in the development of various types of human cancer. The regulation of mammalian target of rapamycin (mTOR) by miRNAs has been studied in several types of cancer, including colorectal cancer (CRC). However, to the best of our knowledge, only limited information regarding the function of miRNAs in human CRC is available. In the present study, the expression of 22 miRNAs in CRC cell lines were investigated in regard to key genes in the mTOR pathway. Initially, it was revealed that mTOR, regulatory-associated protein of mTOR complex I and rapamycin-intensive companion of mTOR were overexpressed in CRC cell lines when compared with a normal colorectal cell line. Subsequently, putative miRNA-mRNA associations were identified via multiple miRNA target prediction programs. The expression levels for the candidate miRNAs were validated using quantitative real-time polymerase chain reaction. Expression analysis revealed that, among 20 miRNAs, five miRNAs (miR-496, miR-1185, miR-654, miR-3183 and miR-495) exhibited significant downregulation in association with the mTOR signaling pathway. Taken together, the results from the present study suggest that several miRNAs that are associated with CRC, with possible roles in mTOR signaling, may have potential therapeutic or diagnostic benefits in CRC treatment.

3.
J Cell Biochem ; 120(5): 7412-7427, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426531

RESUMO

Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target.

4.
Oncol Rep ; 40(5): 2690-2697, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226622

RESUMO

Cancer cells have been known to overexpress the epidermal growth factor receptor (EGFR) and hence relevant multiple­targeted therapies have been developed, with a recent clinical application of the antibody­mediated inhibition of the EGFR. However, this strategy is not useful in cancer cells with mutations in KRAS; a GTPase downstream of EGFR which constitutively activates the pathway without EGF stimulation. Furthermore, mutations in EGFR also reduce the binding of monoclonal antibodies and thereby render them ineffective. In the present study, we designed a chimeric EGF protein fused to the truncated N­terminal domain fragment of Pseudomonas aeruginosa exotoxin A (EGF­ETA), which has ADP­ribosylation activity and induces apoptosis. The EGF­ETA protein was expressed in E. coli as a His­tagged fusion. Our results showed that EGF­ETA significantly inhibited the proliferation of EGFR­positive A431 epidermoid carcinoma (IC50 27 ng/ml) and HN5 head and neck squamous cell carcinoma (IC50 36 ng/ml) cells. However, its effect on cancer cells with little or no EGFR expression was limited (A549­IC50 1,000 ng/ml; MCF­7­IC50 >10,000 ng/ml). Compared to cetuximab, EGF­ETA was highly potent in its killing capacity of HN5 cancer cells at 1,000 ng/ml, while cetuximab had little effect at 1,000 ng/ml. Furthermore, EGF­ETA was just as potent in HCT116 (KRAS G13D) and SW480 (KRAS G12V) colon cancer cell lines harbouring KRAS hyperactivating mutations when compared to KRAS wild­type HT29 colon cancer cells. Finally, co­incubation of EGF­ETA with an anti­EGF antibody abrogated its effect on the EGFR­positive A431 cells. Our results show that the chimeric EGF­ETA toxin is extremely effective against EGFR­positive cancers and raises the potential to further develop this chimera for use in targeting EGFR­positive tumours resistant to monoclonal antibodies.


Assuntos
ADP Ribose Transferases/farmacologia , Toxinas Bacterianas/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Fator de Crescimento Epidérmico/farmacologia , Exotoxinas/farmacologia , Fatores de Virulência/farmacologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Anticorpos Anti-Idiotípicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Exotoxinas/genética , Exotoxinas/imunologia , Humanos , Ligantes , Proteínas Proto-Oncogênicas p21(ras)/genética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
5.
Oncol Rep ; 40(2): 1083-1092, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29845289

RESUMO

The mammalian target of rapamycin (mTOR), a downstream effector of the PI3K/Akt signalling pathway, is a critical regulator of cell metabolism, growth and survival in response to oncogenic factors. Activation of mTOR frequently occurs in human tumours making it a crucial and validated target in the treatment of cancer. mTOR inhibitors such as rapamycin and its analogues decrease cancer progression in experimental models including colorectal cancer (CRC). Recently, the second generation ATP­competitive mTOR kinase (such as PP242) and dual mTOR/PI3K (such as NVP­BEZ235) inhibitors have entered clinical trials as anticancer agents. However, in CRC, the efficacy of these novel drugs needs to be fully investigated. In the present study, we examined five human CRC cell lines, HT29, HCT116, SW480, SW620 and CSC480 to evaluate their sensitivity to three mTOR inhibitors, RAD001, PP242 and NVP­BEZ235. We observed that compared to RAD001 and PP242, NVP­BEZ235 markedly reduced cell proliferation of CRC cells. Furthermore, we found that the reduced cell proliferation caused by NVP­BEZ235 was not achieved through the disruption of mitochondrial potential. Using an mTOR­specific signalling pathway phospho array we revealed that NVP­BEZ235 significantly decreased phosphorylation of 4E­BP1 (Thr70), the downstream target of mTORC1. In addition, NVP­BEZ235 decreased phosphorylation of AKT (Ser473), the downstream target of mTORC2. Immunoblotting analysis revealed that NVP­BEZ235 effectively inhibited 4E­BP1 phosphorylation, while PP242 had a weak inhibitory effect. However, PP242 and NVP­BEZ235 decreased AKT levels in all cell lines. RAD001 demonstrated no effect on 4E­BP1. Based on the above­mentioned results, the dual PI3K/mTOR and ATP­competitive mTOR inhibitors have demonstrated high potential for targeting the mTOR pathway in CRC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Imidazóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/antagonistas & inibidores , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Everolimo/farmacologia , Células HCT116 , Células HT29 , Humanos , Indóis/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Oncol Rep ; 39(6): 2881-2891, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29693155

RESUMO

To date two questions that remain unanswered regarding cancer are the following: i) how is it initiated, and ii) what is the role that cancer stem cells (CSCs) play in the disease process? Understanding the biology of CSCs and how they are generated is pivotal for the development of successful treatment regimens. To date, the lack of a representative cell model has prevented the successful identification and eradication of CSCs in vivo. The current methods of CSC identification are dependent on the protocol used to generate these cells, which has introduced variation and made the identification process more complicated. Furthermore, the list of possible markers is increasing in complexity. This is further confounded by the fact that there is insufficient information to determine whether the cells these markers detect are truly self­renewing stem cells or, instead, progenitor cells. In the present study, we investigated a novel cell line model, CSC480, which can be employed to assess CSC markers and for testing novel therapeutic regimens. CSC480 cells have been revealed to express markers of CSCs such as CD44, ALDH1 and Sox2, that have lower expression in the SW480 cell line. CSC480 cells also expressed higher levels of the cancer resistance marker, ABCG2 and had higher proliferative and growth capacity than SW480 cells. In the present study, we also evaluated a novel approach to identify different cell types present in heterogeneous cancer cell populations according to their proliferative ability using the proliferation marker 5­ethynyl­2'­deoxyuridine (EdU). Furthermore, using EdU, we identified dormant cells with a modified label­retaining cell (LRC) protocol. Through this novel LRC method, we assessed newly discovered markers of stemness to ascertain their capability to identify quiescent from dividing CSCs. In conclusion, the CSC480 cell line was an important model to be used in unravelling the underlying mechanisms that control fast­dividing and partially self­renewing stem cells (SCs) that may give rise to cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo , Células-Tronco Neoplásicas/patologia , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Isoenzimas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
7.
J Neurosci Methods ; 257: 121-33, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432933

RESUMO

BACKGROUND: The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. NEW METHOD: We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. RESULTS: 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. COMPARISON WITH EXISTING METHOD: BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. CONCLUSIONS: The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation.


Assuntos
Neoplasias Encefálicas , Encéfalo , Perfilação da Expressão Gênica/métodos , Neurogênese , Neurônios , Análise de Célula Única/métodos , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Células Cultivadas , Química Click , Desoxiuridina/análogos & derivados , Células-Tronco Embrionárias/fisiologia , Feminino , Glioma/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Mucosa Olfatória/fisiologia , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...