Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38571392

RESUMO

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Assuntos
Vacinas Atenuadas , Vacina contra Febre Amarela , Vírus da Febre Amarela , Humanos , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Vacinas Atenuadas/imunologia , Animais , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Vacinação/métodos
2.
Biomaterials ; 305: 122426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134473

RESUMO

Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.


Assuntos
Microglia , Fagócitos , Microglia/metabolismo , Sistema Nervoso Central , Encéfalo , Transdução de Sinais , Lipopolissacarídeos/farmacologia
3.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446295

RESUMO

Extremely low-frequency electromagnetic stimulation (ELF-EMS) was demonstrated to be significantly beneficial in rodent models of permanent stroke. The mechanism involved enhanced cerebrovascular perfusion and endothelial cell nitric oxide production. However, the possible effect on the neuroinflammatory response and its efficacy in reperfusion stroke models remains unclear. To evaluate ELF-EMS effectiveness and possible immunomodulatory response, we studied neurological outcome, behavior, neuronal survival, and glial reactivity in a rodent model of global transient stroke treated with 13.5 mT/60 Hz. Next, we studied microglial cells migration and, in organotypic hippocampal brain slices, we assessed neuronal survival and microglia reactivity. ELF-EMS improved the neurological score and behavior in the ischemia-reperfusion model. It also improved neuronal survival and decreased glia reactivity in the hippocampus, with microglia showing the first signs of treatment effect. In vitro ELF-EMS decreased (Lipopolysaccharide) LPS and ATP-induced microglia migration in both scratch and transwell assay. Additionally, in hippocampal brain slices, reduced microglial reactivity, improved neuronal survival, and modulation of inflammation-related markers was observed. Our study is the first to show that an EMF treatment has a direct impact on microglial migration. Furthermore, ELF-EMS has beneficial effects in an ischemia/reperfusion model, which indicates that this treatment has clinical potential as a new treatment against ischemic stroke.


Assuntos
Microglia , Acidente Vascular Cerebral , Animais , Roedores , Acidente Vascular Cerebral/terapia , Campos Eletromagnéticos , Encéfalo
4.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142366

RESUMO

p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.


Assuntos
Proteínas de Ciclo Celular , Microglia , Actinas , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Microglia/metabolismo
5.
Glia ; 70(11): 2157-2168, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35809029

RESUMO

Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.


Assuntos
Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Cátions , Citoesqueleto , Microglia/fisiologia , Canais de Cátion TRPV/genética
6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806007

RESUMO

The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.


Assuntos
Membrana Celular/metabolismo , Fenóis/farmacologia , Canal de Cátion TRPA1/agonistas , Animais , Anisotropia , Células CHO , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Carbono/química , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Lipídeos de Membrana , Camundongos , Nociceptores/metabolismo , Estresse Oxidativo
7.
Nature ; 590(7844): 151-156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33442055

RESUMO

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Assuntos
Dor Abdominal/imunologia , Dor Abdominal/patologia , Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Alimentos/efeitos adversos , Intestinos/imunologia , Síndrome do Intestino Irritável/imunologia , Dor Abdominal/etiologia , Dor Abdominal/microbiologia , Adulto , Animais , Citrobacter rodentium/imunologia , Diarreia/imunologia , Diarreia/microbiologia , Diarreia/patologia , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/microbiologia , Hipersensibilidade Alimentar/patologia , Glutens/imunologia , Humanos , Imunoglobulina E/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Leite/imunologia , Ovalbumina/imunologia , Qualidade de Vida , Receptores Histamínicos H1/metabolismo , Proteínas de Soja/imunologia , Triticum/imunologia
8.
Clin Exp Allergy ; 51(1): 87-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090566

RESUMO

BACKGROUND: Staphylococcus aureus colonization and release of enterotoxin B (SEB) has been associated with severe chronic rhinosinusitis with nasal polyps (CRSwNP). The pathogenic mechanism of SEB on epithelial barriers, however, is largely unexplored. OBJECTIVE: We investigated the effect of SEB on nasal epithelial barrier function. METHODS: SEB was apically administered to air-liquid interface (ALI) cultures of primary polyp and nasal epithelial cells of CRSwNP patients and healthy controls, respectively. Epithelial cell integrity and tight junction expression were evaluated. The involvement of Toll-like receptor 2 (TLR2) activation was studied in vitro with TLR2 monoclonal antibodies and in vivo in tlr2-/- knockout mice. RESULTS: SEB applied to ALI cultures of polyp epithelial cells decreased epithelial cell integrity by diminishing occludin and zonula occludens (ZO)-1 protein expression. Antagonizing TLR2 prevented SEB-induced barrier disruption. SEB applied in the nose of control mice increased mucosal permeability and decreased mRNA expression of occludin and ZO-1, whereas mucosal integrity and tight junction expression remained unaltered in tlr2-/- mice. Furthermore, in vitro SEB stimulation resulted in epithelial production of IL-6 and IL-8, which was prevented by TLR2 antagonization. CONCLUSION & CLINICAL RELEVANCE: SEB damages nasal polyp epithelial cell integrity by triggering TLR2 in CRSwNP. Our results suggest that SEB might represent a driving factor of disease exacerbation, rather than a causal factor for epithelial defects in CRSwNP. Interfering with TLR2 triggering might provide a way to avoid the pathophysiological consequences of S. aureus on inflammation in CRSwNP.


Assuntos
Enterotoxinas/farmacologia , Mucosa Nasal/efeitos dos fármacos , Pólipos Nasais/metabolismo , Permeabilidade/efeitos dos fármacos , Rinite/metabolismo , Sinusite/metabolismo , Junções Íntimas/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular , Feminino , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Ocludina/efeitos dos fármacos , Ocludina/genética , Cultura Primária de Células , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Staphylococcus aureus/patogenicidade , Junções Íntimas/genética , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Adulto Jovem , Proteína da Zônula de Oclusão-1/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/genética
9.
Gut ; 70(7): 1275-1286, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33023902

RESUMO

OBJECTIVE: Resolvins (RvD1, RvD2 and RvE1) are endogenous anti-inflammatory lipid mediators that display potent analgesic properties in somatic pain by modulating transient receptor potential vanilloid 1 (TRPV1) activation. To what extent these molecules could also have a beneficial effect on TRPV1 sensitisation and visceral hypersensitivity (VHS), mechanisms involved in IBS, remains unknown. DESIGN: The effect of RvD1, RvD2 and RvE1 on TRPV1 activation and sensitisation by histamine or IBS supernatants was assessed on murine dorsal root ganglion (DRG) neurons using live Ca2+ imaging. Based on the results obtained in vitro, we further studied the effect of RvD2 in vivo using a murine model of post-infectious IBS and a rat model of post-inflammatory VHS. Finally, we also tested the effect of RvD2 on submucosal neurons in rectal biopsies of patients with IBS. RESULTS: RvD1, RvD2 and RvE1 prevented histamine-induced TRPV1 sensitisation in DRG neurons at doses devoid of an analgesic effect. Of note, RvD2 also reversed TRPV1 sensitisation by histamine and IBS supernatant. This effect was blocked by the G protein receptor 18 (GPR18) antagonist O-1918 (3-30 µM) and by pertussis toxin. In addition, RvD2 reduced the capsaicin-induced Ca2+ response of rectal submucosal neurons of patients with IBS. Finally, treatment with RvD2 normalised pain responses to colorectal distention in both preclinical models of VHS. CONCLUSIONS: Our data suggest that RvD2 and GPR18 agonists may represent interesting novel compounds to be further evaluated as treatment for IBS.


Assuntos
Hipersensibilidade/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Receptores de Canabinoides/metabolismo , Canais de Cátion TRPV/metabolismo , Adulto , Animais , Capsaicina/farmacologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Infecções por Enterobacteriaceae/complicações , Feminino , Gânglios Espinais , Histamina , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Inflamação/induzido quimicamente , Inflamação/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Ratos
10.
Front Immunol ; 11: 799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435246

RESUMO

Urinary tract infections (UTI) affect a large proportion of the population, causing among other symptoms, more frequent and urgent micturition. Previous studies reported that the gram-negative bacterial wall component lipopolysaccharides (LPS) trigger acute epithelial and bladder voiding responses, but the underlying mechanisms remain unknown. The cation channel TRPV4 is implicated in the regulation of the bladder voiding. Since TRPV4 is activated by LPS in airway epithelial cells, we sought to determine whether this channel plays a role in LPS-induced responses in urothelial cells (UCs). We found that human-derived UCs display a fast increase in intracellular Ca2+ concentration upon acute application of Escherichia coli LPS. Such responses were detected also in freshly isolated mouse UCs, and found to be dependent on TRPV4, but not to require the canonical TLR4 signaling pathway of LPS detection. Confocal microscopy experiments revealed that TRPV4 is dispensable for LPS-induced nuclear translocation of NF-κB in mouse UCs. On the other hand, quantitative RT PCR determinations showed an enhanced LPS-induced production of proinflammatory cytokines in TRPV4-deficient UCs. Cystometry experiments in anesthetized wild type mice revealed that acute intravesical instillation of LPS rapidly increases voiding frequency. This effect was not observed in TRPV4-deficient animals, but was largely preserved in Tlr4 KO and Trpa1 KO mice. Our results suggest that activation of TRPV4 by LPS in UCs regulates the proinflammatory response and contributes to LPS-induced increase in voiding frequency. These findings further support the concept that TRP channels are sensors of LPS, mediating fast innate immunity mechanisms against gram-negative bacteria.


Assuntos
Cistite/imunologia , NF-kappa B/metabolismo , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/imunologia , Urotélio/metabolismo , Animais , Antígenos de Bactérias/imunologia , Cálcio/metabolismo , Células Cultivadas , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Canais de Cátion TRPV/genética , Bexiga Urinária/microbiologia , Urotélio/patologia
11.
Physiol Rev ; 100(2): 725-803, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670612

RESUMO

The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.


Assuntos
Sinalização do Cálcio , Mecanotransdução Celular , Nociceptividade , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/metabolismo , Sensação Térmica , Animais , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Células Quimiorreceptoras/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Mecanorreceptores/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Termorreceptores/metabolismo
12.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295806

RESUMO

The increase in cytosolic Ca2+ is essential in key effector functions of dendritic cells (DCs), including differentiation, maturation, cytokine expression, and phagocytosis. Although several Ca2+-permeable ion channels have been described in DCs, the contribution of transient receptor potential (TRP) channels remains poorly understood. Here, we investigated whether TRPV4 plays a role in the differentiation, maturation, and phagocytosis of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced mouse bone marrow-derived cells (BMDCs). Using intracellular Ca2+ imaging experiments, we found that TRPV4 was functionally expressed in the plasma membrane of immature CD11c+ BMDCs and that its activity and expression were downregulated in CD11c+ BMDCs matured with lipopolysaccharide (LPS). Comparative analysis of the GM-CSF-stimulated cells showed that Trpv4 knockout and wild-type bone marrow cultures had a similar distribution of differentiated cells, generating a heterogenous culture population rich in CD11c+, CD11b+ cells, and low levels of F4/80+ cells. The lack of TRPV4 did not prevent the LPS-induced nuclear translocation of NF-κB, the upregulation of the proinflammatory cytokines IL-6 and IL-12, or the upregulation of the maturation markers CD40, CD80, and CD86. In contrast, TRPV4-deficient CD11c+ BMDCs exhibited a significantly reduced endocytic capacity of IgG-coated beads, but the internalization of uncoated beads in the absence of TRPV4 was not affected. Taken together, our results demonstrate that TRPV4 was dispensable in the differentiation and maturation of mouse CD11c+ BMDCs but contributed to the mechanism underlying Fc receptor-mediated phagocytosis. Overall, our results further strengthen the role of TRPV4 in immune-related processes.


Assuntos
Células da Medula Óssea/metabolismo , Antígeno CD11c/metabolismo , Expressão Gênica , Canais de Cátion TRPV/genética , Animais , Biomarcadores , Células da Medula Óssea/citologia , Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Células Cultivadas , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Knockout , Imagem Molecular , Fagocitose , Fenótipo , Transporte Proteico , Canais de Cátion TRPV/metabolismo
13.
Elife ; 82019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184584

RESUMO

The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Colesterol/química , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética , Proteína Vermelha Fluorescente
14.
J Mol Cell Cardiol ; 129: 219-230, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853321

RESUMO

The Transient Receptor Potential Melastatin 3 (TRPM3) is a Ca2+-permeable non-selective cation channel activated by the neurosteroid pregnenolone sulfate (PS). This compound was previously shown to contract mouse aorta by activating TRPM3 in vascular smooth muscle cells (VSMC), and proposed as therapeutic modulator of vascular functions. However, PS effects and the role of TRPM3 in resistance arteries remain unknown. Thus, we aimed at determining the localization and physiological role of TRPM3 in mouse mesenteric arteries. Real-time qPCR experiments, anatomical localization using immunofluorescence microscopy and patch-clamp recordings in isolated VSMC showed that TRPM3 expression in mesenteric arteries is restricted to perivascular nerves. Pressure myography experiments in wild type (WT) mouse arteries showed that PS vasodilates with a concentration-dependence that was best fit by two Hill components (effective concentrations, EC50, of 14 and 100 µM). The low EC50 component was absent in preparations from Trpm3 knockout (KO) mice and in WT arteries in the presence of the CGRP receptor antagonist BIBN 4096. TRPM3-dependent vasodilation was partially inhibited by a cocktail of K+ channel blockers, and not mediated by ß-adrenergic signaling. We conclude that, contrary to what was found in aorta, PS dilates mesenteric arteries, partly via an activation of TRPM3 that triggers CGRP release from perivascular nerve endings and a subsequent activation of K+ channels in VSMC. We propose that TRPM3 is implicated in the regulation of the tone of resistance arteries and that its activation by yet unidentified endogenous damage-associated molecules lead to protective vasodilation responses in mesenteric arteries.


Assuntos
Artérias Mesentéricas/inervação , Canais de Cátion TRPM/metabolismo , Vasodilatação , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ativação do Canal Iônico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Sistema Nervoso Simpático/metabolismo , Canais de Cátion TRPM/genética , Transgenes
15.
Gut ; 68(8): 1406-1416, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30472681

RESUMO

OBJECTIVES: Vagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human. DESIGN: Using Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1-5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI. RESULTS: EFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery. CONCLUSION: Enteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI. TRIAL REGISTRATION NUMBER: NCT02425774.


Assuntos
Benzofuranos , Íleus , Intestino Delgado , Músculo Liso , Pancreaticoduodenectomia/efeitos adversos , Complicações Pós-Operatórias , Adulto , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacologia , Modelos Animais de Doenças , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Íleus/etiologia , Íleus/imunologia , Íleus/fisiopatologia , Íleus/prevenção & controle , Inflamação/imunologia , Inflamação/prevenção & controle , Intestino Delgado/imunologia , Intestino Delgado/inervação , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Pancreaticoduodenectomia/métodos , Projetos Piloto , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/prevenção & controle , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Resultado do Tratamento , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
16.
Sci Rep ; 8(1): 12010, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104600

RESUMO

Bacterial lipopolysaccharides (LPS) activate the TRPA1 cation channels in sensory neurons, leading to acute pain and inflammation in mice and to aversive behaviors in fruit flies. However, the precise mechanisms underlying this effect remain elusive. Here we assessed the hypothesis that TRPA1 is activated by mechanical perturbations induced upon LPS insertion in the plasma membrane. We asked whether the effects of different LPS on TRPA1 relate to their ability to induce mechanical alterations in artificial and cellular membranes. We found that LPS from E. coli, but not from S. minnesota, activates TRPA1. We then assessed the effects of these LPS on lipid membranes using dyes whose fluorescence properties change upon alteration of the local lipid environment. E. coli LPS was more effective than S. minnesota LPS in shifting Laurdan's emission spectrum towards lower wavelengths, increasing the fluorescence anisotropy of diphenylhexatriene and reducing the fluorescence intensity of merocyanine 540. These data indicate that E. coli LPS induces stronger changes in the local lipid environment than S. minnesota LPS, paralleling its distinct ability to activate TRPA1. Our findings indicate that LPS activate TRPA1 by producing mechanical perturbations in the plasma membrane and suggest that TRPA1-mediated chemosensation may result from primary mechanosensory mechanisms.


Assuntos
Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Lipídeos de Membrana/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Células CHO , Cricetulus , Difenilexatrieno/química , Difenilexatrieno/metabolismo , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Mecanotransdução Celular , Microscopia Confocal , Microscopia de Fluorescência , Pirimidinonas/química , Pirimidinonas/metabolismo , Proteínas Recombinantes/metabolismo , Salmonella enterica/metabolismo , Transfecção , Lipossomas Unilamelares/metabolismo
17.
Toxins (Basel) ; 10(8)2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103489

RESUMO

The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.


Assuntos
Endotoxinas/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Canais de Potencial de Receptor Transitório/química
18.
Cell Calcium ; 73: 72-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29689522

RESUMO

Acute neurogenic inflammation and pain associated to bacterial infection have been traditionally ascribed to sensitization and activation of sensory nerve afferents secondary to immune cell stimulation. However, we recently showed that lipopolysaccharides (LPS) directly activate the Transient Receptor Potential channels TRPA1 in sensory neurons and TRPV4 in airway epithelial cells. Here we investigated whether LPS activates other sensory TRP channels expressed in sensory neurons. Using intracellular Ca2+ imaging and patch-clamp we determined the effects of LPS on recombinant TRPV1, TRPV2, TRPM3 and TRPM8, heterologously expressed in HEK293T cells. We found that LPS activates TRPV1, although with lower potency than for TRPA1. Activation of TRPV1 by LPS was not affected by mutations of residues required for activation by electrophilic agents or by diacylglycerol and capsaicin. On the other hand, LPS weakly activated TRPM3, activated TRPM8 at 25 °C, but not at 35 °C, and was ineffective on TRPV2. Experiments performed in mouse dorsal root ganglion (DRG) neurons revealed that genetic ablation of Trpa1 did not abolish the responses to LPS, but remain detected in 30% of capsaicin-sensitive cells. The population of neurons responding to LPS was dramatically lower in double Trpa1/Trpv1 KO neurons. Our results show that, in addition to TRPA1, other TRP channels in sensory neurons can be targets of LPS, suggesting that they may contribute to trigger and regulate innate defenses against gram-negative bacterial infections.


Assuntos
Gânglios Espinais/metabolismo , Lipopolissacarídeos/farmacologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1/agonistas , Canais de Cátion TRPV/agonistas
19.
Part Fibre Toxicol ; 14(1): 43, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100528

RESUMO

BACKGROUND: Silica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells. RESULTS: Using fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells. CONCLUSIONS: Our results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas , Dióxido de Silício/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Pulmão/metabolismo , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Movimento/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
20.
Nat Commun ; 8(1): 1059, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057902

RESUMO

Lipopolysaccharides (LPS), the major components of the wall of gram-negative bacteria, trigger powerful defensive responses in the airways via mechanisms thought to rely solely on the Toll-like receptor 4 (TLR4) immune pathway. Here we show that airway epithelial cells display an increase in intracellular Ca2+ concentration within seconds of LPS application. This response occurs in a TLR4-independent manner, via activation of the transient receptor potential vanilloid 4 cation channel (TRPV4). We found that TRPV4 mediates immediate LPS-induced increases in ciliary beat frequency and the production of bactericidal nitric oxide. Upon LPS challenge TRPV4-deficient mice display exacerbated ventilatory changes and recruitment of polymorphonuclear leukocytes into the airways. We conclude that LPS-induced activation of TRPV4 triggers signaling mechanisms that operate faster and independently from the canonical TLR4 immune pathway, leading to immediate protective responses such as direct antimicrobial action, increase in airway clearance, and the regulation of the inflammatory innate immune reaction.


Assuntos
Sinalização do Cálcio , Células Epiteliais/imunologia , Lipopolissacarídeos/imunologia , Mucosa Respiratória/imunologia , Canais de Cátion TRPV/metabolismo , Animais , Cílios/fisiologia , Escherichia coli , Células HEK293 , Humanos , Imunidade Inata , Camundongos Knockout , Óxido Nítrico/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...