Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
3.
Front Chem ; 9: 733642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568283

RESUMO

We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm2). The stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the single entities is discussed. In suspensions, the QDs behave differently depending on the solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS under constant illumination. The photocurrent expected for single QDs is discussed. The value of the observed photocurrents, > 1 pA is due to the formation of agglomerates consistent with the collision frequency and suspension stability. The observed frequency of collisions for the stepwise photocurrents is smaller than the diffusion-limited cases expected for single QDs colliding with the electrode surface. Dynamic light scattering and scanning electron microscopy studies support the detection of aggregates. The results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of single entities by increasing the stability of the nanomaterial. The rate of hole transfer from the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain conditions of electron injection to the Pt electrode and in colloidal suspensions of CdSe/ZnS.

4.
Front Chem ; 9: 678112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277563

RESUMO

We present the analysis of formaldehyde (HCHO) in anhydrous methanol (CH3OH) as a case study to quantify HCHO in non-aqueous samples. At higher concentrations (C > 0.07 M), we detect a product of HCHO, methoxy methanol (MM, CH3OCH2OH), by Fourier transform infrared spectroscopy, FTIR. Formaldehyde reacts with CH3OH, CD3OH, and CD3OD as shown by FTIR with a characteristic spectral feature around 1,195 cm-1 for CH3OH used for the qualitative detection of MM, a formaldehyde derivative in neat methanol. Ab initio calculations support this assignment. The extinction coefficient for 1,195 cm-1 is in the order of 1.4 × 102 M-1cm-1, which makes the detection limit by FTIR in the order of 0.07 M. For lower concentrations, we performed the quantitative analysis of non-aqueous samples by derivatization with dinitrophenylhydrazine (DNPH). The derivatization uses an aqueous H2SO4 solution to yield the formaldehyde derivatized hydrazone. Ba(OH)2 removes sulfate ions from the derivatized samples and a final extraction with isobutyl acetate to yield a 1:1 methanol: isobutyl acetate solvent for injection for electrospray ionization (ESI). The ESI analysis gave a linear calibration curve for concentrations from 10 to 200 µM with a time-of-flight analyzer (TOF). The detection and quantification limits are 7.8 and 26 µM, respectively, for a linear correlation with R 2 > 0.99. We propose that the formaldehyde in CH3OH is in equilibrium with the MM species, without evidence of HCHO in solution. In the presence of water, the peaks for MM become less resolved, as expected from the well-known equilibria of HCHO that favors the formation of methylene glycol and polymeric species. Our results show that HCHO, in methanol does not exist in the aldehyde form as the main chemical species. Still, HCHO is in equilibrium between the production of MM and the formation of hydrated species in the presence of water. We demonstrate the ESI-MS analysis of HCHO from a non-aqueous TiO2 suspension in methanol. Detection of HCHO after illumination of the colloid indicates that methanol photooxidation yields formaldehyde in equilibrium with the solvent.

5.
Anal Chem ; 92(13): 8704-8714, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510201

RESUMO

We demonstrate the use of digital frequency analysis in single nanoparticle electrochemical detection. The method uses fast Fourier transforms (FFT) of single entity electrochemical transients and digital filters. These filters effectively remove noise with the Butterworth filter preserving the amplitude of the fundamental processes in comparison with the rectangle filter. Filtering was done in three different types of experiments: single nanoparticle electrocatalytic amplification, photocatalytic amplification, and nanoimpacts of single entities. In the individual nanoparticle stepwise transients, low-pass filters maintain the step height. Furthermore, a Butterworth band-stop filter preserves the peak height in blip transients if the band-stop cutoff frequencies are compatible with the nanoparticle/electrode transient interactions. In hydrazine oxidation by single Au nanoparticles, digital filtering does not complicate the analysis of the step signal because the stepwise change of the particle-by-particle current is preserved with the rectangle, Bessel and Butterworth low pass filters, with the later minimizing time shifts. In the photocurrent single entity transients, we demonstrate resolving a step smaller than the noise. In photoelectrochemical setups, the background processes are stochastic and appear at distinct frequencies that do not necessarily correlate with the detection frequency (fp), of TiO2 nanoparticles. This lack of correlation indicates that background signals have their characteristic frequencies and that it is advantageous to perform filtering a posteriori. We also discuss selecting the filtering frequencies based on sampling rates and fp. In experiments electrolyzing ZnO, that model nanoimpacts, a band-stop filter can remove environmental noise within the sampling spectral region while preserving relevant information on the current transient. We discuss the limits of Bessel and Butterworth filters for resolving consecutive transients.

6.
Nanomaterials (Basel) ; 8(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154313

RESUMO

We discuss the electrodeposition of two-dimensional (2D) Pt-nanostructures on Highly Oriented Pyrolytic Graphite (HOPG) achieved under constant applied potential versus a Pt counter electrode (Eappl = ca. -2.2 V vs. NHE, normal hydrogen electrode). The deposition conditions are discussed in terms of the electrochemical behavior of the electrodeposition precursor (H2PtCl6). We performed cyclic voltammetry (CV) of the electrochemical Pt deposit on HOPG and on Pt substrates to study the relevant phenomena that affect the morphology of Pt deposition. Under conditions where the Pt deposition occurs and H2 evolution is occurring at the diffusion-limited rate (-0.3 V vs. NHE), Pt forms larger structures on the surface of HOPG, and the electrodeposition of Pt is not limited by diffusion. This indicates the need for large overpotentials to direct the 2D growth of Pt. Investigation of the possible effect of Cl- showed that Cl- deposits on the surface of Pt at low overpotentials, but strips from the surface at potentials more positive than the electrodeposition potential. The CV of Pt on HOPG is a strong function of the nature of the surface. We propose that during immersion of HOPG in the electrodeposition solution (3 mM H2PtCl6, 0.5 M NaCl, pH 2.3) Pt islands are formed spontaneously, and these islands drive the growth of the 2D nanostructures. The reducing agents for the spontaneous deposition of Pt from solution are proposed as step edges that get oxidized in the solution. We discuss the possible oxidation reactions for the edge sites.

7.
Anal Chem ; 89(20): 10726-10733, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28853561

RESUMO

The simultaneous electrochemical quantification of oxidized (GSSG) and reduced glutathione (GSH), biomarkers of oxidative stress, is demonstrated in biological fluids. The detection was accomplished by the development of a modified carbon electrode and was applied to the analysis of biological fluids of model organisms under oxidative stress caused by lead intoxication. Nanocomposite molecular material based on cobalt phthalocyanine (CoPc) and multiwalled carbon nanotubes functionalized with carboxyl groups (MWCNTf) was developed to modify glassy carbon electrodes (GCE) for the detection of reduced and oxidized glutathione. The morphology of the nanocomposite film was characterized by scanning electron microscopy (SEM) and profilometry. The electrochemical behavior of the modified electrode was assessed by cyclic voltammetry (CV) to determine the surface coverage (Γ) by CoPc. The electrocatalytic behavior of the modified electrode toward reduced (GSH) and oxidized (GSSG) forms of glutathione was assessed by CV studies at physiological pH. The obtained results show that the combined use of CoPc and MWCNTf results in an electrocatalytic activity for GSH oxidation and GSSG reduction, enabling the simultaneous detection of both species. Differential pulse voltammetry reveals detection limits of 100 µM for GSH and 8.3 µM for GSSG, respectively. The potential interference from ascorbic acid, cysteine, glutamic acid, and glucose was also studied, and the obtained results show limited effects from these species. Finally, the hybrid electrode was used for the determination of GSH and GSSG in rat urine and plasma samples, intoxicated or not by lead. Both glutathione forms were detected in these complex biological matrixes without any pretreatment. Our results portray the role of GSH and GSSG as markers of oxidative stress in live organisms under lead intoxication.


Assuntos
Técnicas Eletroquímicas/métodos , Dissulfeto de Glutationa/análise , Glutationa/análise , Animais , Líquidos Corporais/metabolismo , Eletrodos , Glutationa/sangue , Glutationa/urina , Dissulfeto de Glutationa/sangue , Dissulfeto de Glutationa/urina , Indóis/química , Limite de Detecção , Masculino , Nanocompostos/química , Nanotubos de Carbono/química , Compostos Organometálicos/química , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar
10.
Faraday Discuss ; 193: 313-325, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711900

RESUMO

We report the stochastic interactions between dye sensitized anatase nanoparticles, suspended in a colloid, and a Pt ultramicroelectrode (UME) that result in step-wise behavior in the current vs. time response. The stochastic currents are observed in the dark and under illumination. In the dark, the currents are anodic, consistent with the oxidation of the dye N719 at the Pt surface. The electrochemical behavior of the dye was investigated in MeOH and MeCN with a quasireversible cyclic voltammogram (CV) observed at 1 V s-1. The anodic currents observed in the dark due to nanoparticles (NPs) at the Pt surface are consistent with the CVs in MeOH and MeCN. Under illumination cathodic steps are observed and assigned to the reduction of the oxidized form of the dye generated after electrons are injected into the TiO2 NPs. The colloidal behavior is a strong function of the history of the colloid with illumination time increasing the size of the agglomerates and with larger agglomerates being less photoelectrochemically active. Agglomerates of ca. 100 nm in diameter are proposed to be photoactive entities with a higher probability of detection that contribute to the staircase photocurrent response.

11.
Anal Chem ; 87(1): 777-84, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417747

RESUMO

We demonstrate the controlled reduction of colloidal ZnO nanoparticles (NPs) on a Hg ultramicroelectrode (UME) and its application to determine the redox potential for the deoxygenation of ZnO. The NPs are in colloidal suspension in acetonitrile (MeCN) and reach the electrode by migrational mass transport. At the electrode surface, the Zn(2+) in zinc oxide NPs is reduced to a Zn(Hg) amalgam. The redissolution (stripping) of Zn(2+) from the amalgam into MeCN is used to determine the amount of reduced ZnO. The stripping charge is proportional to the concentration of the colloidal ZnO NPs at potentials where the reduction is found to be limited by mass transport. The charge resulting from the reduction of ZnO is a function of the reduction potential and presents a sigmoidal curve that fits a quasireversible model and is used to determine the formal reduction potential, E(0)'.We observed that E(0)' is a strong function of NP size in the size regime of 11-80 nm in diameter. The ZnO particles studied are more stable than the Zn(Hg) amalgam, but smaller NPs are less stable compared to larger particles, making smaller NPs relatively easier to reduce. The reduction potential of ZnO NPs is a strong function of 1/r. This Kelvin effect is analogous to the electrochemical behavior of metal nanoparticles described by Plieth's model.

12.
J Am Chem Soc ; 135(30): 10894-7, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23862766

RESUMO

We describe a method to detect individual semiconducting nanoparticles (NPs) using the photoelectrochemical (PEC) current measured at an ultramicroelectrode (UME). We use photooxidation of MeOH by TiO2 NPs as a model system of photocatalysis in solution. NPs suspended in MeOH under constant illumination produce valence-band holes that oxidize MeOH. The electrons are collected at the UME, and the current-versus-time data show discrete current changes that are assigned to particle-by-particle interactions of the NPs with the UME. The stepwise changes in the photocurrent denote irreversible attachment of NPs to Pt UMEs (<30 µm diameter). We found that accumulation of electrons in the conduction band by the NPs is not enough to explain the stochastic PEC currents. We propose that the observed anodic steps have a PEC nature and are due to photooxidation of MeOH by the NPs at the electrode surface.

13.
J Am Chem Soc ; 131(9): 3216-24, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19219993

RESUMO

It is fundamentally interesting to study the photoelectrochemical properties of complex oxides for applications in photovoltaics and photocatalysis. In this paper, we study the band gap (E(g)) and energetics of the conduction band (CB) and valence band (VB) for films of zinc stannate (Zn(2)SnO(4)) nanoparticles (ca. 25 nm) of the inverse-spinel structure prepared by the hydrothermal method. UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemistry, and photoelectrochemistry were used to study the films. The fundamental E(g) for Zn(2)SnO(4) is proposed to be 3.6-3.7 eV with a direct-forbidden transition. The position of the CB was approximated from the flat band potential, E(fb), measured by the photocurrent onset potential. In aqueous and nonaqueous solutions the E(fb) of n-Zn(2)SnO(4) was found to be more positive than TiO(2) anatase in the electrochemical scale. In aqueous solutions E(fb) of Zn(2)SnO(4) was found to follow a 59 mV/pH slope with E(fb) extrapolated at pH 0 of 0.08 V vs NHE. In acetonitrile solutions that simulate the electrolyte for dye-sensitized solar cells (DSCs) the E(fb) of Zn(2)SnO(4) was found to be strongly dependent on electrolyte composition and more positive than TiO(2) vs the I(-)/I(3)(-) couple. The reverse trend observed for the open-circuit voltage in certain DSC electrolytes is explained in terms of the higher rates of electron-triiodide recombination of TiO(2) despite the lower position of the Zn(2)SnO(4) CB in the vacuum scale.

14.
J Am Chem Soc ; 130(50): 16985-95, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19053403

RESUMO

We introduce a new in situ electrochemical technique based on the scanning electrochemical microscope (SECM) operating in a transient feedback mode for the detection and direct quantification of adsorbed species on the surface of electrodes. A SECM tip generates a titrant from a reversible redox mediator that reacts chemically with an electrogenerated or chemically adsorbed species at a substrate of about the same size as the tip, which is positioned at a short distance from it (ca.1 microm). The reaction between the titrant and the adsorbate provides a transient positive feedback loop until the adsorbate is consumed completely. The sensing mechanism is provided by the contrast between positive and negative feedback, which allows a direct quantification of the charge neutralized at the substrate. The proposed technique allows quantification of the adsorbed species generated at the substrate at a given potential under open circuit conditions, a feature not attainable with conventional electrochemical methods. Moreover, the feedback mode allows the tip to be both the titrant generator and detector, simplifying notably the experimental setup. The surface interrogation technique we introduce was tested for the quantification of electrogenerated oxides (adsorbed oxygen species) on gold and platinum electrodes at neutral pH in phosphate and TRIS buffers and with two different mediator systems. Good agreement is found with cyclic voltammetry at the substrate and with previous results in the literature, but we also find evidence for the formation of "incipient oxides" which are not revealed by conventional voltammetry. The mode of operation of the technique is supported by digital simulations, which show good agreement with the experimental results.

15.
Anal Chem ; 80(11): 4055-64, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18447323

RESUMO

Oxygen evolution electrocatalysts in acidic media were studied by scanning electrochemical microscopy (SECM) in the substrate generation-tip collection (SG-TC) imaging mode with a 100 microm diam tip. Pure IrO2 and Sn(1-x)Ir(x)O2 combinatorial mixtures were prepared by a sol-gel route to form arrays of electrocatalyst spots. The experimental setup has been developed to optimize screening of electrocatalyst libraries under conditions where the entire array is capable of the oxygen evolution reaction (OER). The activity of individual spots was determined by reducing the interference from the reaction products of neighboring spots diffusing to the tip over the spot of interest. A gold layer deposited on the external wall of the SECM tip was used as a tip shield. In this study the shield was kept at a constant potential to reduce oxygen under mass transfer controlled conditions. The tip shield consumes oxygen coming from the neighbor spots in the array and enables the tip to correctly detect the activity of the spot below the tip. Simulations and experimental results are shown, demonstrating the effectiveness of the tip shield with the SG-TC setup in determining the properties of the composite materials and imaging arrays.

16.
Anal Chem ; 80(10): 3612-21, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18407616

RESUMO

We have developed a new imaging method for scanning electrochemical microscopy (SECM) employing fast-scan anodic stripping voltammetry (ASV) to provide sensitive and selective imaging of multiple chemical species at interfaces immersed in solution. A rapid cyclic voltammetry scan (100 V/s) is used along with a short preconcentration time (300-750 ms) to allow images to be acquired in a normal SECM time frame. A Hg-Pt film electrode is developed having an equivalent Hg thickness of 40 nm that has good sensitivity at short preconcentration times and also retains thin-film behavior with high-speed voltammetric stripping. Fast-scan anodic stripping currents are shown to be linear for 1-100 microM of Pb (2+) and Cd (2+) solutions using a preconcentration time of 300 ms. SECM images showing the presence of Pb (2+) and Cd (2+) at concentrations as low as 1 microM are presented. In addition, a single ASV-SECM image is shown to produce unique concentration maps indicating Cd (2+) and Pb (2+), generated in situ from a corroding sample, while simultaneously detecting the depletion of O 2 at this sample. The transient voltammetric response at the film electrode is simulated and shows good agreement with the experimental behavior. We discuss the behavior of images and concentration profiles obtained with different imaging conditions and show that mass-transport limitations in the tip-substrate gap can induce dissolution. ASV-SECM can thus be used to detect and study induced dissolution not only at bulk metal surfaces but also on underpotential deposition layers, in this case Cd and Pb on Pt. In addition, we discuss how surface diffusion phenomena may relate to the observed ASV-SECM behavior.

17.
Anal Chem ; 80(5): 1813-8, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18251520

RESUMO

We describe a wet process for the fabrication of poly(tetrafluoroethylene) (PTFE)-covered electrodes in which arrays of holes ( approximately 200 microm) are formed. The PTFE coating provides electrical insulation of most of the electrode surface with selected regions exposed for electrochemical experiments. The arrays of microholes can be controllably patterned and filled with precursor solutions using a piezoelectric dispenser. A micrometer spot of electrocatalyst is produced after reduction of the precursor. The application is tested for scanning electrochemical microscopy (SECM) in the tip generation-substrate collection (TG-SC) studies of electrocatalysts. The method is shown to reduce the substrate background currents that are included in the electrochemical signal read from the local perturbation induced with the SECM tip to the substrate in the TG-SC mode of SECM. This background current reduction is consistent with the decrease in the exposed area of the electrode. The general methodology for the fabrication of the substrate electrodes and two proof-of-concept applications in the TG-SC SECM modality are described.

18.
Langmuir ; 24(6): 2841-9, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18237208

RESUMO

Electron transfer (ET) rate kinetics through n-alkanethiol self-assembled monolayers (SAMs) of alkanethiols of different chain lengths [Me(CH2)nSH; n=8, 10, 11, 15] on Au and Hg surfaces and ferrocene (Fc)-terminated SAMs (poly-norbornylogous and HS(CH2)12CONHCH2Fc) on Au were studied using cyclic voltammetry and scanning electrochemical microscopy (SECM). The SECM results allow determination of the ET kinetics of solution-phase Ru(NH3)63+/2+ through the alkanethiol SAMs on Au and Hg. A model using the potential dependence of the measured rate constants is proposed to compensate for the pinhole contribution. Extrapolated values of koML for Ru(NH3)63+/2+ using the model follow the expected exponential decay (beta is 0.9) for different chain lengths. For a Fc-terminated poly-norbornyl SAM, the standard rate constant of direct tunneling (ko is 189+/-31 s(-1)) is in the same order as the ko value of HS(CH2)12CONHCH2Fc. In blocking and Fc SAMs, the rates of ET are demonstrated to follow Butler-Volmer kinetics with transfer coefficients alpha of 0.5. Lower values of alpha are treated as a result of the pinhole contribution. The normalized rates of ET are 3 orders of magnitude higher for Fc-terminated than for blocking monolayers. Scanning electron microscopy imaging of Pd nanoparticles electrochemically deposited in pinholes of blocking SAMs was used to confirm the presence of pinholes.


Assuntos
Elétrons , Membranas Artificiais , Alcanos/química , Eletroquímica , Compostos Ferrosos/química , Ouro/química , Cinética , Mercúrio/química , Metalocenos , Microscopia Eletrônica de Varredura/métodos , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...