Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004804

RESUMO

The methanogenic strain Mx-05T was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order Methanomassiliicoccales. It shares 86.9% 16S rRNA gene sequence identity with Methanomassiliicoccus luminyensis, the only member of this order previously isolated. The cells of Mx-05T were non-motile cocci, with a diameter range of 0.4-0.7 µm. They grew anaerobically and reduced methanol, monomethylamine, dimethylamine, and trimethylamine into methane, using H2 as an electron donor. H2/CO2, formate, ethanol, and acetate were not used as energy sources. The growth of Mx-05T required an unknown medium factor(s) provided by Eggerthella lenta and present in rumen fluid. Mx-05T grew between 30 °C and 40 °C (optimum 37 °C), over a pH range of 6.9-8.3 (optimum pH 7.5), and between 0.02 and 0.34 mol.L-1 NaCl (optimum 0.12 mol.L-1 NaCl). The genome is 1.67 Mbp with a G+C content of 55.5 mol%. Genome sequence annotation confirmed the absence of the methyl branch of the H4MPT Wood-Ljungdahl pathway, as described for other Methanomassiliicoccales members. Based on an average nucleotide identity analysis, we propose strain Mx-05T as being a novel representative of the order Methanomassiliicoccales, within the novel family Methanomethylophilaceae, for which the name Methanomethylophilus alvi gen. nov, sp. nov. is proposed. The type strain is Mx-05T (JCM 31474T).

2.
Food Chem ; 415: 135779, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36863238

RESUMO

We aimed to assess if casein structure affects its digestion and its subsequent amino acid delivery kinetic. Higher nitrogen levels were recovered in dialysates after in vitro digestions of sodium caseinate (SC, formed of small aggregates) compared to micellar casein (MC, native form of casein) and calcium caseinate (CC, intermediate structure). Likewise, plasma indispensable amino-acid concentration peak was higher after SC compared to MC or CC ingestion in healthy volunteers in a randomized, double blind, cross-over study. In pigs, gamma-scintigraphy using labelled meals revealed that SC was mainly localized in the proximal part of the stomach whereas MC was distributed in the whole gastric cavity. Caseins were found in both solid and liquid phases and partly hydrolyzed casein in the solid phase shortly after SC drink ingestion. These data support the concept of slow (MC) and rapid (SC) casein depending of casein structure, likely due to their intra-gastric clotting properties.


Assuntos
Aminoácidos , Caseínas , Estudos Cross-Over , Digestão , Animais , Caseínas/química , Caseínas/metabolismo , Estômago/metabolismo , Suínos , Humanos , Voluntários Saudáveis
3.
Microbiol Spectr ; 11(3): e0466722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995244

RESUMO

Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.


Assuntos
Microbiota , Streptococcus thermophilus , Animais , Camundongos , Humanos , Streptococcus thermophilus/genética , Conjugação Genética , Trato Gastrointestinal , Transferência Genética Horizontal
4.
Appl Microbiol Biotechnol ; 106(21): 7315-7336, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202936

RESUMO

Early life is a critical period where gut ecosystem and functions are being established with significant impact on health. For regulatory, technical, and cost reasons, in vitro gut models can be used as a relevant alternative to in vivo assays. An exhaustive literature review was conducted to adapt the Mucosal Artificial Colon (M-ARCOL) to specific physicochemical (pH, transit time, and nutritional composition of ileal effluents) and microbial parameters from toddlers in the age range of 6 months-3 years, resulting in the Tm-ARCOL. In vitro fermentations were performed to validate this newly developed colonic model compared to in vivo toddler data. Results were also compared to those obtained with the classical adult configuration. Fecal samples from 5 toddlers and 4 adults were used to inoculate bioreactors, and continuous fermentations were performed for 8 days. Gut microbiota structure (lumen and mucus-associated microbiota) and functions (gas and short-chain fatty acids) were monitored. Clearly distinct microbial signatures were obtained between the two in vitro conditions, with lower α-diversity indices and higher abundances of infant-related microbial populations (e.g., Bifidobacteriaceae, Enterobacteriaceae) in toddler versus adult conditions. In accordance with in vivo data, methane was found only in adult bioreactors, while higher percentage of acetate but lower proportions of propionate and butyrate was measured in toddlers compared to adults. This new in vitro model will provide a powerful platform for gut microbiome mechanistic studies in a pediatric context, both in nutritional- (e.g., nutrients, probiotics, prebiotics) and health-related (e.g., drugs, enteric pathogens) studies. KEY POINTS: • Development of a novel in vitro colonic model recapitulating the toddler environment. • Specific toddler versus adult digestive conditions are preserved in vitro. • The new model provides a powerful platform for microbiome mechanistic studies.


Assuntos
Microbiota , Propionatos , Adulto , Lactente , Humanos , Pré-Escolar , Criança , Colo , Ácidos Graxos Voláteis , Fezes , Butiratos , Metano
5.
Biotechnol Adv ; 54: 107796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34252564

RESUMO

The human digestion is a multi-step and multi-compartment process essential for human health, at the heart of many issues raised by academics, the medical world and industrials from the food, nutrition and pharma fields. In the first years of life, major dietary changes occur and are concomitant with an evolution of the whole child digestive tract anatomy and physiology, including colonization of gut microbiota. All these phenomena are influenced by child exposure to environmental compounds, such as drugs (especially antibiotics) and food pollutants, but also childhood infections. Due to obvious ethical, regulatory and technical limitations, in vivo approaches in animal and human are more and more restricted to favor complementary in vitro approaches. This review summarizes current knowledge on the evolution of child gut physiology from birth to 3 years old regarding physicochemical, mechanical and microbial parameters. Then, all the available in vitro models of the child digestive tract are described, ranging from the simplest static mono-compartmental systems to the most sophisticated dynamic and multi-compartmental models, and mimicking from the oral phase to the colon compartment. Lastly, we detail the main applications of child gut models in nutritional, pharmaceutical and microbiological studies and discuss the limitations and challenges facing this field of research.


Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Animais , Criança , Digestão , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Humanos
6.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919372

RESUMO

Natural mineral water (NMWs) intake has been traditionally used in the treatment of various gastrointestinal diseases. We investigated the effect of two French NMWs, one a calcium and magnesium sulphate, sodium chloride, carbonic, and ferruginous water (NMW1), the other a mainly bicarbonate water (NMW2) on the prevention of intestinal inflammation. Intestinal epithelial cells stimulated with heat inactivated Escherichia coli or H2O2 were treated with NMWs to evaluate the anti-inflammatory effects. Moderate colitis was induced by 1% dextran sulfate sodium (DSS) in Balbc/J mice drinking NMW1, NWW2, or control water. General signs and histological features of colitis, fecal lipocalin-2 and pro-inflammatory KC cytokine levels, global mucosa-associated microbiota, were analyzed. We demonstrated that both NMW1 and NMW2 exhibited anti-inflammatory effects using intestinal cells. In induced-colitis mice, NMW1 was effective in dampening intestinal inflammation, with significant reductions in disease activity scores, fecal lipocalin-2 levels, pro-inflammatory KC cytokine release, and intestinal epithelial lesion sizes. Moreover, NMW1 was sufficient to prevent alterations in the mucosa-associated microbiota. These observations, through mechanisms involving modulation of the mucosa-associated microbiota, emphasize the need of investigation of the potential clinical efficiency of such NMWs to contribute, in human beings, to a state of low inflammation in inflammatory bowel disease.


Assuntos
Colite/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Águas Minerais/administração & dosagem , Animais , Colite/induzido quimicamente , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
7.
Appl Microbiol Biotechnol ; 104(23): 10233-10247, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33085024

RESUMO

In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.


Assuntos
Microbioma Gastrointestinal , Colo , Fezes , Humanos , RNA Ribossômico 16S/genética , Manejo de Espécimes
8.
BMC Biol ; 18(1): 141, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054775

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) substantially contributes to the burden of diarrheal illnesses in developing countries. With the use of complementary in vitro models of the human digestive environment, TNO gastrointestinal model (TIM-1), and Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we provided the first detailed report on the spatial-temporal modulation of ETEC H10407 survival, virulence, and its interplay with gut microbiota. These systems integrate the main physicochemical parameters of the human upper digestion (TIM-1) and simulate the ileum vs ascending colon microbial communities and luminal vs mucosal microenvironments, captured from six fecal donors (M-SHIME). RESULTS: A loss of ETEC viability was noticed upon gastric digestion, while a growth renewal was found at the end of jejunal and ileal digestion. The remarkable ETEC mucosal attachment helped to maintain luminal concentrations above 6 log10 mL-1 in the ileum and ascending colon up to 5 days post-infection. Seven ETEC virulence genes were monitored. Most of them were switched on in the stomach and switched off in the TIM-1 ileal effluents and in a late post-infectious stage in the M-SHIME ascending colon. No heat-labile enterotoxin production was measured in the stomach in contrast to the ileum and ascending colon. Using 16S rRNA gene-based amplicon sequencing, ETEC infection modulated the microbial community structure of the ileum mucus and ascending colon lumen. CONCLUSIONS: This study provides a better understanding of the interplay between ETEC and gastrointestinal cues and may serve to complete knowledge on ETEC pathogenesis and inspire novel prophylactic strategies for diarrheal diseases.


Assuntos
Escherichia coli Enterotoxigênica/fisiologia , Escherichia coli Enterotoxigênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/fisiologia , Colo Ascendente/microbiologia , Humanos , Íleo/microbiologia , Viabilidade Microbiana
9.
Food Funct ; 11(2): 1891, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990022

RESUMO

Correction for 'Benefits of the ipowder® extraction process applied to Melissa officinalis L.: improvement of antioxidant activity and in vitro gastro-intestinal release profile of rosmarinic acid' by Valérie Bardot et al., Food Funct., 2020, DOI: 10.1039/c9fo01144g.

10.
Food Funct ; 11(1): 722-729, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31912082

RESUMO

The objective of this study was to evaluate the benefits of a new extraction process, the ipowder® technology, applied to Melissa officinalis L. Compared to M. officinalis ground dry leaves, the ipowder® had a similar phytochemical fingerprint but contained twice the concentration of rosmarinic acid (by HPTLC and HPLC) and had a two-fold greater antioxidant activity (DPPH* method). In vitro digestion experiments (TIM-1 model) showed better availability of rosmarinic acid for intestinal absorption with the ipowder® than with ground dry leaves, manifested by a three-fold reduction in the quantity of ingested product needed for delivery of the same amount of rosmarinic acid into the upper gastro-intestinal tract. This study shows that the ipowder® technology preserves all the original plant compounds intact while making some active ingredients more accessible and available to exert their effects. To obtain a given effect, the amount of ipowder® extract to ingest will therefore be lower; a reduction in the daily dosage will be more convenient for the patient and will improve patient compliance with supplementation.


Assuntos
Antioxidantes/química , Cinamatos/química , Depsídeos/química , Intestinos/efeitos dos fármacos , Melissa , Extratos Vegetais/química , Estômago/efeitos dos fármacos , Antioxidantes/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Composição de Medicamentos , Humanos , Técnicas In Vitro , Modelos Anatômicos , Fitoterapia , Folhas de Planta/química , Ácido Rosmarínico
11.
Microb Ecol Health Dis ; 28(1): 1308070, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572754

RESUMO

Background: The availability of fresh stool samples is a prerequisite in most gut microbiota functional studies. Objective: Strategies for amplification and long-term gut microbiota preservation from fecal samples would favor sample sharing, help comparisons and reproducibility over time and between laboratories, and improve the safety and ethical issues surrounding fecal microbiota transplantations. Design: Taking advantage of in vitro gut-simulating systems, we amplified the microbial repertoire of a fresh fecal sample and assessed the viability and resuscitation of microbes after preservation with some common intracellular and extracellular acting cryoprotective agents (CPAs), alone and in different combinations. Preservation efficiencies were determined after 3 and 6 months and compared with the fresh initial microbiota diversity and metabolic activity, using the chemostat-based Environmental Control System for Intestinal Microbiota (ECSIM) in vitro model of the gut environment. Microbial populations were tested for fermentation gas, short-chain fatty acids, and composition of amplified and resuscitated microbiota, encompassing methanogenic archaea. Results: Amplification of the microbial repertoire from a fresh fecal sample was achieved with high fidelity. Dimethylsulfoxide, alone or mixed with other CPAs, showed the best efficiency for functional preservation, and the duration of preservation had little effect. Conclusions: The amplification and resuscitation of fecal microbiota can be performed using specialized in vitro gut models. Correct amplification of the initial microbes should ease the sharing of clinical samples and improve the safety of fecal microbiota transplantation. Abbreviations: CDI, Clostridium difficile infection; CPA, cryoprotective agent; D, DMSO, dimethylsulfoxide; FMT, fecal microbiota transplantation; G, glycerol; IBD, inflammatory bowel disease; P, PEG-4000, polyethylene glycol 4000 g.mol-1; SCFA, short-chain fatty acid; SNR, signal-to-noise ratio.

12.
Appl Microbiol Biotechnol ; 101(6): 2533-2547, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28188340

RESUMO

For ethical, technical, regulatory, and cost reasons, in vitro methods are increasingly used as an alternative to in vivo experimentations. The aim of the present study was to validate, according to in vivo data in living animals, a new in vitro model of the piglet colon, the PigutIVM, under both control conditions and antibiotic disturbance by the widely used colistin. The PigutIVM reproduces the main biotic and abiotic parameters of the piglet colon: temperature, pH, retention time, supply of ileal effluents, complex, and metabolically active microbiota and self-maintained anaerobiosis. Under both control and antibiotic-treated conditions, qPCR analyses showed that the main bacterial populations of piglet gut microbiota were similar in vitro and in vivo, with Pearson correlation coefficient higher than 0.9. During colistin administration, both in piglets and in the in vitro model, a significant decrease in Escherichia coli populations was observed together with changes in microbial composition of subdominant populations. SCFA concentrations were similar in vitro and in vivo and were not modified by colistin. Interestingly, the administration of the probiotic Saccharomyces cerevisiae var. boulardii CNCM I-1079 led in vitro to a decrease in E. coli levels, as previously observed when the antibiotic treatment was applied. This new in vitro model of the piglet colon provides a flexible, reproducible, and cost-effective tool for the screening of drugs or new dietary compounds, such as pre- or probiotics. It will be helpful for researchers, feed producers, or veterinarians when developing innovative non-antibiotic strategies.


Assuntos
Reatores Biológicos , Cultura em Câmaras de Difusão , Microbioma Gastrointestinal/efeitos dos fármacos , Consórcios Microbianos/efeitos dos fármacos , Probióticos/farmacologia , Anaerobiose , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Colo/efeitos dos fármacos , Colo/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Concentração de Íons de Hidrogênio , Íleo/efeitos dos fármacos , Íleo/microbiologia , Consórcios Microbianos/fisiologia , Modelos Biológicos , Saccharomyces boulardii/efeitos dos fármacos , Saccharomyces boulardii/crescimento & desenvolvimento , Suínos , Temperatura
13.
Crit Rev Microbiol ; 43(1): 116-132, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27798976

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens that constitute a serious public health threat. Currently, there is no specific treatment available for EHEC infections in human creating an urgent need for the development of alternative therapeutic strategies. Among them, one of the most promising approaches is the use of probiotic microorganisms. Even if many studies have shown the antagonistic effects of probiotic bacteria or yeast on EHEC survival, virulence, adhesion on intestinal epithelium or pathogen-induced inflammatory responses, mechanisms mediating their beneficial effects remain unclear. This review describes EHEC pathogenesis and novel therapeutic strategies, with a particular emphasis on probiotics. The interests and limits of a probiotic-based approach and the way it might be incorporated into global health strategies against EHEC infections will be discussed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Escherichia coli Êntero-Hemorrágica/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Probióticos/administração & dosagem , Leveduras/fisiologia , Animais , Antibiose , Bactérias/genética , Humanos , Mucosa Intestinal/microbiologia , Leveduras/genética
14.
J Neurogastroenterol Motil ; 23(1): 124-134, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27530163

RESUMO

BACKGROUND/AIMS: Human gut microbiota harbors numerous metabolic properties essential for the host's health. Increased intestinal transit time affects a part of the population and is notably observed with human aging, which also corresponds to modifications of the gut microbiota. Thus we tested the metabolic and compositional changes of a human gut microbiota induced by an increased transit time simulated in vitro. METHODS: The in vitro system, Environmental Control System for Intestinal Microbiota, was used to simulate the environmental conditions of 3 different anatomical parts of the human colon in a continuous process. The retention times of the chemostat conditions were established to correspond to a typical transit time of 48 hours next increased to 96 hours. The bacterial communities, short chain fatty acids and metabolite fingerprints were determined. RESULTS: Increase of transit time resulted in a decrease of biomass and of diversity in the more distal compartments. Short chain fatty acid analyses and metabolite fingerprinting revealed increased activity corresponding to carbohydrate fermentation in the proximal compartments while protein fermentations were increased in the lower parts. CONCLUSIONS: This study provides the evidence that the increase of transit time, independently of other factors, affects the composition and metabolism of the gut microbiota. The transit time is one of the factors that explain some of the modifications seen in the gut microbiota of the elderly, as well as patients with slow transit time.

15.
Pediatr Res ; 80(5): 734-743, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27429202

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) are major foodborne pathogens that constitute a serious public health threat, mainly in young children. Shiga toxins (Stx) are the main virulence determinants of EHEC pathogenesis but adhesins like intimin (eae) and Long polar fimbriae (Lpf) also contribute to infection. The TNO GastroIntestinal Model (TIM) was used for a comparative study of EHEC O157:H7 survival and virulence under adult and child digestive conditions. METHODS: Survival kinetics in the in vitro digestive tract were determined by plating while bacterial viability was assessed by flow cytometry analysis. Expression of stx, eae, and lpf genes was followed by reverse transcriptase-quantitative PCR (RT-qPCR) and Stx production was measured by ELISA (enzyme-linked immunosorbent assay). RESULTS: Upon gastrointestinal passage, a higher amount of viable cells was found in the simulated ileal effluents of children compared to that of adults (with 34 and 6% of viable cells, respectively). Expression levels of virulence genes were up to 125-fold higher in children. Stx was detected only in child ileal effluents. CONCLUSION: Differences in digestive physicochemical parameters may partially explain why children are more susceptible to EHEC infection than adults. Such data are essential for a full understanding of EHEC pathogenesis and would help in designing novel therapeutic approaches.


Assuntos
Adesinas Bacterianas/metabolismo , Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/microbiologia , Toxina Shiga/metabolismo , Fatores de Virulência/metabolismo , Adesinas Bacterianas/genética , Adulto , Criança , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/patogenicidade , Citometria de Fluxo , Mucosa Gástrica/metabolismo , Humanos , Intestino Delgado/metabolismo , Cinética , Modelos Biológicos , Toxina Shiga/genética , Virulência , Fatores de Virulência/genética
16.
Biotechnol Bioeng ; 113(6): 1325-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26616643

RESUMO

For ethical, regulatory, and economic reasons, in vitro human digestion models are increasingly used as an alternative to in vivo assays. This study aims to present the new Engineered Stomach and small INtestine (ESIN) model and its validation for pharmaceutical applications. This dynamic computer-controlled system reproduces, according to in vivo data, the complex physiology of the human stomach and small intestine, including pH, transit times, chyme mixing, digestive secretions, and passive absorption of digestion products. Its innovative design allows a progressive meal intake and the differential gastric emptying of solids and liquids. The pharmaceutical behavior of two model drugs (paracetamol immediate release form and theophylline sustained release tablet) was studied in ESIN during liquid digestion. The results were compared to those found with a classical compendial method (paddle apparatus) and in human volunteers. Paracetamol and theophylline tablets showed similar absorption profiles in ESIN and in healthy subjects. For theophylline, a level A in vitro-in vivo correlation could be established between the results obtained in ESIN and in humans. Interestingly, using a pharmaceutical basket, the swelling and erosion of the theophylline sustained release form was followed during transit throughout ESIN. ESIN emerges as a relevant tool for pharmaceutical studies but once further validated may find many other applications in nutritional, toxicological, and microbiological fields. Biotechnol. Bioeng. 2016;113: 1325-1335. © 2015 Wiley Periodicals, Inc.


Assuntos
Materiais Biomiméticos , Digestão/fisiologia , Motilidade Gastrointestinal/fisiologia , Intestino Delgado/fisiologia , Modelos Biológicos , Estômago/fisiologia , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
17.
Int J Biol Macromol ; 82: 653-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459166

RESUMO

Bifidobacterium breve C50 secretes a lipoprotein associated with glucose, acting in an aggregating form (>600kDa) as an agonist of TLR2/6. Similar lipoproteins were sought for in bifidobacteria. In silico, the closest homology was shown with a Bifidobacterium longum protein containing CHAP and lipobox domains. Two strains secreted aggregates whose peptides sequences aligned with the mined protein. C16:0 and C18:0 fatty acids detected in the aggregates further supported a lipoprotein structure. Glucose and mannose detected by gas chromatography were likely ligands of the lipoprotein. The binding of aggregates to galectin-1 indicated that hexosamines and galactose surrounded them. However, unlike B. breve C50, aggregate secreted by B. longum CBi0703 was unable to bind TLR2/6 likely because of a more hydrophobic structure. In gnotobiotic mice, the intake of B. longum aggregate induced, in splenic dendritic cells, the expression of genes involved in antigen presentation. A positive correlation between the number of dendritic cells and CD4(+)CD25(+) cells was observed in mice receiving these aggregates. In conclusion, B. longum secretes a lipoprotein forming aggregates which may influence dendritic and CD4(+)CD25(+) cell interactions independently of the TLR2/6 pathway.


Assuntos
Proteínas de Bactérias/química , Bifidobacterium/metabolismo , Mineração de Dados , Lipoproteínas/química , Agregados Proteicos , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Bifidobacterium/imunologia , Carboidratos/química , Biologia Computacional , Simulação por Computador , Bases de Dados de Proteínas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Galectina 1/química , Galectina 1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Lipídeos/química , Lipoproteínas/isolamento & purificação , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Camundongos , Peso Molecular , Peptídeos/química , Agregados Proteicos/imunologia , Ligação Proteica , Estabilidade Proteica , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo
18.
Food Microbiol ; 53(Pt A): 18-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611166

RESUMO

Streptococcus thermophilus, a lactic acid bacterium used to produce yogurts and cheeses is more and more considered for its potential probiotic properties. This implies that additional information should be obtained regarding its survival and metabolic activity in the human Gastro-Intestinal Tract (GIT). In this study, we screened 30 S. thermophilus strains for urease, small heat shock protein, and amino-acid decarboxylase functions which may play a role in survival in the upper part of the GIT. The survival kinetics of 4 strains was investigated using the TIM, a physiologically relevant in vitro dynamic gastric and small intestinal model. The three strains LMD9, PB18O and EBLST20 showed significantly higher survival than CNRZ21 in all digestive compartments of the TIM, which may be related to the presence of urease and heat shock protein functions. When LMD9 bacterial cells were delivered in a fermented milk formula, a significant improvement of survival in the TIM was observed compared to non-fermented milk. With the RIVET (Recombinase In Vivo Expression Technology) method applied to the LMD9 strain, a promoter located upstream of hisS, responsible for the histidyl-transfer RNA synthesis, was found to be specifically activated in the artificial stomach. The data generated on S. thermophilus survival and its adaptation capacities to the digestive tract are essential to establish a list of biomarkers useful for the selection of probiotic strains.


Assuntos
Viabilidade Microbiana , Streptococcus thermophilus/fisiologia , Trato Gastrointestinal Superior/metabolismo , Trato Gastrointestinal Superior/microbiologia , Iogurte/microbiologia , Adaptação Fisiológica , Animais , Digestão , Ácido Gástrico/metabolismo , Genes Bacterianos , Humanos , Leite/microbiologia , Modelos Anatômicos , Probióticos/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Urease/metabolismo
19.
Food Funct ; 6(12): 3737-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26364594

RESUMO

Bread melanoidins are heterogeneous, nitrogen-containing, brown macromolecules generated during the last stages of the Maillard reaction in bread. The aim of this study was to investigate the impact and fate of these bread melanoidins in the human gastrointestinal tract using in vitro systems. Batch systems as well as the TNO gastrointestinal tract were used for studying the digestion of various bread samples. These samples included bread crumb, bread crust and two bread-crust-simulating models: a fiber-free model (gluten, starch and glucose heated together) and its control, free of Maillard reaction products (gluten heated separately than starch and glucose). Furthermore, the impact of these two bread-crust-simulating models on the gut microbiota was assessed using a static anaerobic batch system. Bread melanoidins from bread crust and its model were shown to be partially digested by amylases and proteases, suggesting that these melanoidins have peptidic as well as glycosidic bonds in their skeleton. The impact of bread melanoidins from the bread-crust-simulating models and their digestion products on the gut microbiota revealed an individual-dependent response for most flora except for enterobacteria. This flora decreased by -22%, -48% & -100% depending on the individual. Thus, bread melanoidins seem to exert an anti-inflammatory effect by inhibiting enterobacteria.


Assuntos
Pão/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Polímeros/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Enterobacteriaceae/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Reação de Maillard , Masculino , Polímeros/química
20.
Anaerobe ; 34: 50-2, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25887578

RESUMO

Reported failures with gnotobiotic animal models led us to establish an in-vitro model of reciprocal conversion of methanogenic and non methanogenic microbiota from human fecal samples. Consequences on gas and microbiota compositions are reported. This should facilitate the study of the controversial role of gut methanogens in human health.


Assuntos
Microbioma Gastrointestinal , Metano/metabolismo , Técnicas Microbiológicas/métodos , Microbiota , Modelos Teóricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...