Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37227907

RESUMO

This article studies synchronization issues for a class of discrete-time fractional-order quaternion-valued uncertain neural networks (DFQUNNs) using nonseparation method. First, based on the theory of discrete-time fractional calculus and quaternion properties, two equalities on the nabla Laplace transform and nabla sum are strictly proved, whereafter three Caputo difference inequalities are rigorously demonstrated. Next, based on our established inequalities and equalities, some simple and verifiable quasi-synchronization criteria are derived under the quaternion-valued nonlinear controller, and complete synchronization is achieved using quaternion-valued adaptive controller. Finally, numerical simulations are presented to substantiate the validity of derived results.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37022883

RESUMO

This article is concerned with average consensus of multi-agent systems via intermittent event-triggered strategy. First, a novel intermittent event-triggered condition is designed and the corresponding piecewise differential inequality for the condition is established. Using the established inequality, several criteria on average consensus are obtained. Second, the optimality has been investigated based on average consensus. The optimal intermittent event-triggered strategy in the sense of Nash equilibrium and corresponding local Hamilton-Jacobi-Bellman equation are derived. Third, the adaptive dynamic programming algorithm for the optimal strategy and its neural network implementation with actor-critic architecture are also given. Finally, two numerical examples are presented to show the feasibility and effectiveness of our strategies.

3.
Comput Biol Med ; 150: 105985, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36137319

RESUMO

In recent years, deep learning (DL) has been recognized very useful in the semantic segmentation of biomedical images. Such an application, however, is significantly hindered by the lack of pixel-wise annotations. In this work, we propose a data pair generative adversarial network (DPGAN) for the purpose of synthesizing concurrently the diverse biomedical images and the segmentation labels from random latent vectors. First, a hierarchical structure is constructed consisting of three variational auto-encoder generative adversarial networks (VAEGANs) with an extra discriminator. Subsequently, to alleviate the influence from the imbalance between lesions and non-lesions areas in biomedical segmentation data sets, we divide the DPGAN into three stages, namely, background stage, mask stage and advanced stage, with each stage deploying a VAEGAN. In such a way, a large number of new segmentation data pairs are generated from random latent vectors and then used to augment the original data sets. Finally, to validate the effectiveness of the proposed DPGAN, experiments are carried out on a vestibular schwannoma data set, a kidney tumor data set and a skin cancer data set. The results indicate that, in comparison to other state-of-the-art GAN-based methods, the proposed DPGAN shows better performance in the generative quality, and meanwhile, gains an effective boost on semantic segmentation of class imbalanced biomedical images.


Assuntos
Neoplasias Renais , Neoplasias Cutâneas , Humanos , Semântica , Processamento de Imagem Assistida por Computador
4.
SN Comput Sci ; 3(4): 286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578678

RESUMO

The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.

5.
Math Biosci Eng ; 19(12): 12852-12865, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654025

RESUMO

The aim of this article is to analyze the delay influence on the attraction for a scalar tick population dynamics equation accompanying two disparate delays. Taking advantage of the fluctuation lemma and some dynamic inequalities, we derive a criterion to assure the persistence and positiveness on the considered model. Furthermore, a time-lag-dependent condition is proposed to insure the global attractivity for the addressed model. Besides, we give some simulation diagrams to substantiate the validity of the theoretical outcomes.


Assuntos
Carrapatos , Animais , Dinâmica Populacional , Simulação por Computador
6.
Sci Rep ; 11(1): 19816, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615890

RESUMO

Effective appointment scheduling (EAS) is essential for the quality and patient satisfaction in hospital management. Healthcare schedulers typically refer patients to a suitable period of service before the admission call closes. The appointment date can no longer be adjusted. This research presents the whale optimization algorithm (WOA) based on the Pareto archive and NSGA-II algorithm to solve the appointment scheduling model by considering the simulation approach. Based on these two algorithms, this paper has addressed the multi-criteria method in appointment scheduling. This paper computes WOA and NSGA with various hypotheses to meet the analysis and different factors related to patients in the hospital. In the last part of the model, this paper has analyzed NSGA and WOA with three cases. Fairness policy first come first serve (FCFS) considers the most priority factor to obtain from figure to strategies optimized solution for best satisfaction results. In the proposed NSGA, the FCFS approach and the WOA approach are contrasted. Numerical results indicate that both the FCFS and WOA approaches outperform the strategy optimized by the proposed algorithm.


Assuntos
Algoritmos , Agendamento de Consultas , Atenção à Saúde/normas , Modelos Teóricos , Qualidade da Assistência à Saúde , Árvores de Decisões , Atenção à Saúde/métodos , Humanos , Melhoria de Qualidade
7.
Comput Methods Programs Biomed ; 183: 105061, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539717

RESUMO

BACKGROUND: Nanofluids have innovative characteristics that make them potentially beneficial in numerous applications in heat and mass transports like fuel cells, hybrid-powered engines, microelectronics, pharmaceutical processes, domestic refrigerator, engine cooling, heat exchanger, chiller and in boiler flue gas temperature decay. Nanomaterial increased the coefficient of heat transport and thermal performance compared to continuous phase liquid. Having such significance in mind, the nanofluid flow of second grade material over a convectively heated surface is examined here. Nano-fluid is electrically conducting. Energy expression is studied through Joule heating, heat source/sink and dissipation. In addition, thermophoresis and Brownian diffusion are investigated. Physical aspects of entropy optimization in nanomaterials with cubic autocatalysis chemical reaction are accounted. Through second law of thermodynamics the total entropy generation rate is computed. METHODS: The nonlinear governing PDE's are transformed to ordinary ones through transformations. Total residual error is calculated for momentum, energy and concentration equations using optimal homotopy analysis method (OHAM). RESULTS: Behaviors of different variables on velocity, Bejan number, concentration, temperature and entropy optimization are examined via graphs. Local skin friction coefficient (Cfx) and gradient of temperature (Nux)are examined graphically. Comparison between the recent and previous result is given. Temperature and velocity are enhanced significantly versus (λ1). Entropy generation rate boosts up for magnetic parameter and Brinkman number. CONCLUSIONS: The obtained outcomes show that velocity is higher via mixed convective variable. Temperature boosts up in presence of higher magnetic parameter, thermophoretic paraemter, Brinkman number and second grade parameter while Biot number decays. Concentration has increasing behavior via larger Brownian and homogeneous and heterogeneous parameters. Entropy rate and Bejan number have similar impact through diffusion parameters with respect to both homogeneous and heterogeneous reactions variables.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Algoritmos , Catálise , Simulação por Computador , Entropia , Temperatura Alta , Hidrodinâmica , Magnetismo , Teste de Materiais , Modelos Teóricos , Resistência ao Cisalhamento , Estresse Mecânico , Propriedades de Superfície
8.
Comput Methods Programs Biomed ; 183: 105051, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31526945

RESUMO

BACKGROUND: A newly developed approach in the field of nanotechnology for solving problems and collection of information is the use of nanoparticles. This idea has been further utilized in a better way in pharmaceutical industries. By using nanotechnology, the field of pharmaceutical science has been modernized and redeveloped. The use of nanotechnology in such industries has convinced the scientist to obtain more economical and easier applications. Therefore, with such effectiveness in mind, a theoretical study has been conducted to examine the effects of nonlinear radiative heat flux and magnetohydrodynamics for nanomaterial flow of Williamson fluid over a convectively heated stretchable surface. Brownian diffusion is utilized in mathematical modeling. Furthermore, heat source/sink, viscous dissipation and nonlinear radiative heat flux are examined. Convective boundary condition is implemented. Salient effects of chemical reaction and Arrhenius activation energy in mass transfer are considered. Total entropy rate is obtained through implementation of thermodynamics second law. METHODS: The nonlinear PDEs are reduced into ordinary ones by appropriate similarity transformations. A semi-analytical technique i.e., homotopy method is implemented to obtain the convergent series solutions. RESULTS: The obtained results indicate that the velocity of fluid particles increases versus higher fluid parameter. Schmidt number and activation energy variable have opposite effect on concentration. Entropy rate grows up with fluid parameter and Brinkman and Biot numbers while opposite trend is seen for Bejan number. CONCLUSIONS: Velocity of the material particles declines through larger estimations of magnetic variable while it upsurges for higher fluid parameter. Thermal distribution shows similar impact for radiative and magnetic variables. Mass concentration decreases against chemical reaction parameter while it increases via activation energy variable. Entropy and Bejan numbers show opposite impacts versus Brinkman number. Skin friction coefficient increases through larger Weissenberg number.


Assuntos
Temperatura Alta , Nanopartículas/química , Nanotecnologia/tendências , Algoritmos , Difusão , Entropia , Fricção , Magnetismo , Teste de Materiais , Modelos Teóricos , Nanoestruturas/química , Viscosidade
9.
Entropy (Basel) ; 21(5)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33267249

RESUMO

In this paper, inspired by a newly proposed two-dimensional nonlinear oscillator with an infinite number of coexisting attractors, a modified nonlinear oscillator is proposed. The original system has an exciting feature of having layer-layer coexisting attractors. One of these attractors is self-excited while the rest are hidden. By forcing this system with its twin, a new four-dimensional nonlinear system is obtained which has an infinite number of coexisting torus attractors, strange attractors, and limit cycle attractors. The entropy, energy, and homogeneity of attractors' images and their basin of attractions are calculated and reported, which showed an increase in the complexity of attractors when changing the bifurcation parameters.

10.
Entropy (Basel) ; 21(3)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33266994

RESUMO

A map without equilibrium has been proposed and studied in this paper. The proposed map has no fixed point and exhibits chaos. We have investigated its dynamics and shown its chaotic behavior using tools such as return map, bifurcation diagram and Lyapunov exponents' diagram. Entropy of this new map has been calculated. Using an open micro-controller platform, the map is implemented, and experimental observation is presented. In addition, two control schemes have been proposed to stabilize and synchronize the chaotic map.

11.
Entropy (Basel) ; 20(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265759

RESUMO

In this paper, we introduce a new, three-dimensional chaotic system with one stable equilibrium. This system is a multistable dynamic system in which the strange attractor is hidden. We investigate its dynamic properties through equilibrium analysis, a bifurcation diagram and Lyapunov exponents. Such multistable systems are important in engineering. We perform an entropy analysis, parameter estimation and circuit design using this new system to show its feasibility and ability to be used in engineering applications.

12.
Entropy (Basel) ; 20(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33265809

RESUMO

In this paper, we investigate the dynamics of a fractional order chaotic map corresponding to a recently developed standard map that exhibits a chaotic behavior with no fixed point. This is the first study to explore a fractional chaotic map without a fixed point. In our investigation, we use phase plots and bifurcation diagrams to examine the dynamics of the fractional map and assess the effect of varying the fractional order. We also use the approximate entropy measure to quantify the level of chaos in the fractional map. In addition, we propose a one-dimensional stabilization controller and establish its asymptotic convergence by means of the linearization method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...