Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2305476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284649

RESUMO

Emerging evidence indicates that antibiotic-induced dysbiosis can play an etiological role in the pathogenesis of neuropsychiatric disorders. However, most of this evidence comes from rodent models. The objective of this study was to evaluate if antibiotic-induced gut dysbiosis can elicit changes in gut metabolites and behavior indicative of gut-brain axis disruption in common marmosets (Callithrix jacchus) - a nonhuman primate model often used to study sociability and stress. We were able to successfully induce dysbiosis in marmosets using a custom antibiotic cocktail (vancomycin, enrofloxacin and neomycin) administered orally for 28 days. This gut dysbiosis altered gut metabolite profiles, behavior, and stress reactivity. Increase in gut Fusobacterium spp. post-antibiotic administration was a novel dysbiotic response and has not been observed in any rodent or human studies to date. There were significant changes in concentrations of several gut metabolites which are either neurotransmitters (e.g., GABA and serotonin) or have been found to be moderators of gut-brain axis communication in rodent models (e.g., short-chain fatty acids and bile acids). There was an increase in affiliative behavior and sociability in antibiotic-administered marmosets, which might be a coping mechanism in response to gut dysbiosis-induced stress. Increase in urinary cortisol levels after multiple stressors provides more definitive proof that this model of dysbiosis may cause disrupted communication between gut and brain in common marmosets. This study is a first attempt to establish common marmosets as a novel model to study the impact of severe gut dysbiosis on gut-brain axis cross-talk and behavior.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Humanos , Antibacterianos/toxicidade , Callithrix , Eixo Encéfalo-Intestino , Disbiose/microbiologia , Multiômica
2.
Gastroenterology ; 166(5): 842-858.e5, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38154529

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplastic stroma surrounding most tumors. Activated stromal fibroblasts, namely cancer-associated fibroblasts (CAFs), play a major role in PDAC progression. We analyzed whether CAFs influence acinar cells and impact PDAC initiation, that is, acinar-to-ductal metaplasia (ADM). ADM connection with PDAC pathophysiology is indicated, but not yet established. We hypothesized that CAF secretome might play a significant role in ADM in PDAC initiation. METHODS: Mouse and human acinar cell organoids, acinar cells cocultured with CAFs and exposed to CAF-conditioned media, acinar cell explants, and CAF cocultures were examined by means of quantitative reverse transcription polymerase chain reaction, RNA sequencing, immunoblotting, and confocal microscopy. Data from liquid chromatography with tandem mass spectrometry analysis of CAF-conditioned medium and RNA sequencing data of acinar cells post-conditioned medium exposure were integrated using bioinformatics tools to identify the molecular mechanism for CAF-induced ADM. Using confocal microscopy, immunoblotting, and quantitative reverse transcription polymerase chain reaction analysis, we validated the depletion of a key signaling axis in the cell line, acinar explant coculture, and mouse cancer-associated fibroblasts (mCAFs). RESULTS: A close association of acino-ductal markers (Ulex europaeus agglutinin 1, amylase, cytokeratin-19) and mCAFs (α-smooth muscle actin) in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1Cre (KPC) and LSL-KrasG12D/+; Pdx1Cre (KC) autochthonous progression tumor tissue was observed. Caerulein treatment-induced mCAFs increased cytokeratin-19 and decreased amylase in wild-type and KC pancreas. Likewise, acinar-mCAF cocultures revealed the induction of ductal transdifferentiation in cell line, acinar-organoid, and explant coculture formats in WT and KC mice pancreas. Proteomic and transcriptomic data integration revealed a novel laminin α5/integrinα4/stat3 axis responsible for CAF-mediated acinar-to-ductal cell transdifferentiation. CONCLUSIONS: Results collectively suggest the first evidence for CAF-influenced acino-ductal phenotypic switchover, thus highlighting the tumor microenvironment role in pancreatic carcinogenesis inception.


Assuntos
Células Acinares , Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Transdiferenciação Celular , Laminina , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Células Acinares/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Metaplasia/patologia , Metaplasia/metabolismo , Organoides/metabolismo , Organoides/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Transdução de Sinais , Microambiente Tumoral
3.
Front Oncol ; 13: 1073820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816942

RESUMO

MUC16/CA125 is one of the few oldest cancer biomarkers still used in current clinical practice. As mesothelium is an abundant source of MUC16 and a major contributor to stromal heterogeneity in PDAC, we investigated the regulation of MUC16 in tumor and stromal compartments individually. The trajectories constructed using the single-cell transcriptomes of stromal cells from KPC tumors demonstrated continuity in the trajectory path between MUC16-expressing mesothelial cells and other CAF subsets. Further, the tumor tissues of MUC16 whole-body knockout (KPCM) showed dysregulation in the markers of actomyosin assembly and fibroblast differentiation (iCAF and myCAF), indicating that MUC16 has an extra-tumoral role in controlling CAF differentiation. Although we found mesothelium-derivative stromal cells to be bystanders in normal pancreas, the proportion of these cells was higher in invasive PDAC, particularly in TP53 deficient tumors. Moreover, we also detail the regulation of MUC16, KRAS, and SOX9 by TP53 family members (TP53 and TP63) using multi-omics data from knockout models, PDAC cell lines, and human PDAC tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...