Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851658

RESUMO

Utilizing microwave heating and an aqueous saturated solution of K2CO3 as a catalyst, a rapidone-pot synthesis of oxospiro[chromene-4.3-indoline] derivatives was produced in high yields. The experimental results confirmed that the saturated solution of K2CO3 gives outstanding yield to dangerous metals and strong bases during investigations into high-performance catalysts. The used catalyst is green, affordable, incredibly mild, and widely accessible. However, it generates samples, reduces the amount of byproducts, and is expected to be used in industrial-scale heterocyclic derivatives. New oxospiro[chromene-4.3-indoline] derivatives have been created from various isatin by condensing with various phenols. The biological activities results showed that when compared to erlotinib, the derivatives 3b, 4b, 5b, and 6b were the most effective analogues on A549, MCF-7, HepG-2, and HCT-116 cells, with an IC50 range of 3.32 to 11.88 µM. In A549 cells, compounds 3b, 4b, 5b, and 6b induced apoptosis, as shown by the up-regulation of Bax, the up-regulation of Bcl-2, and the stimulation of caspase-3 and -9. With IC50 value of 0.19 ± 0.09, compound3b was demonstrated to be the most effective against EGFRWT. Compounds 4b and 6b have good antibacterial activity toward Staphylococcus aureus, comparable to ciprofloxacin, and about half as much activity as ampicillin, according to the MIC value. Compound 6b's MIC is about 25% lower than clotrimazole drug. The in silico molecular docking outcomes of compounds 3b, 4b, 5b, and 6b in the EGFR active site depicted their ability to adopt essential binding interactions compared to the reference Erlotinib. Moreover, the investigation of the physicochemical properties of the most promising dual acting antiproliferative and antimicrobial compounds 4b and 6b through the egg-boiled method illustrated acceptable lipophilicity, GIT absorption, and blood-brain barrier penetration characteristics.

2.
Mol Divers ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324159

RESUMO

Dicyandiamide (DCD) reacted with amino acids 1a-f to produce biguanides 2 and 4 and guanidine pyrazolones 3, 5, 6, 7, and 8, according to the reaction. DCD exhibited the following reactions: imidodicarbonimidicdiamide 9, diazocan-2-ylguanidine 10, methyl biguanidylthion 11, N-carbamothioylimidodicarbonimidicdiamide 12, 2-guanidinebenzoimidazole 13a, 2-guanidinylbenzoxazole 13b, and 2-guanidinylbenzothiazol 13c. These reactions were triggered by 6-amino caproic acid, thioacetamide, thiourea, o-aminophenol, o-aminothiophenol, and anthranilic acid, respectively. Compound 2 had the least antimicrobial activity, while compound 13c demonstrated the most antibacterial impact against all bacterial strains. Furthermore, in terms of antiglycation efficacy (AGEs), 12, 11, and 7 were the most effective AGE cross-linking inhibitors. Eight and ten, which showed a considerable inhibition on cross-linking AGEs, come next. Compounds 4 and 6 on the other hand have shown the least suppression of AGE production. The most promising antiglycation scaffolds 8, 11, and 12 in the Human serum albumin (HAS) active site were shown to be able to adopt crucial binding interactions with important amino acids based on the results of in silico molecular docking. The most promising antiglycation compounds 8, 11, and 12 were also shown to have better hydrophilicity, acceptable lipophilicity, gastrointestinal tract absorption (GIT), and blood-brain barrier penetration qualities when their physicochemical properties were examined using the egg-boiled method.

3.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570648

RESUMO

In the last decade, gypsogenin has attracted widespread attention from medicinal chemists by virtue of its prominent anti-cancer potential. Despite its late identification, gypsogenin has proved itself as a new anti-proliferative player battling for a frontline position among other classic pentacyclic triterpenes such as oleanolic acid, glycyrrhetinic acid, ursolic acid, betulinic acid, and celastrol. Herein, we present the most important reactions of gypsogenin via modification of its four functional groups. Furthermore, we demonstrate insights into the anti-cancer activity of gypsogenin and its semisynthetic derivatives and go further by introducing our perspective to judiciously guide the prospective rational design. The present article opens a new venue for a better exploitation of gypsogenin chemical entity as a lead compound in cancer chemotherapy. To the best of our knowledge, this is the first review article exploring the anti-cancer activity of gypsogenin derivatives.


Assuntos
Neoplasias , Ácido Oleanólico , Saponinas , Triterpenos , Humanos , Estudos Prospectivos , Triterpenos Pentacíclicos/química , Triterpenos/química , Saponinas/uso terapêutico , Neoplasias/tratamento farmacológico
4.
Cells ; 8(7)2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261948

RESUMO

Neuroinflammation and microglia-mediated neurotoxicity contribute to the pathogenesis of a broad range of neurodegenerative diseases; therefore, identifying novel compounds that can suppress adverse activation of glia is an important goal. We have previously identified a class of trisubstituted pyrazoles that possess neuroprotective and anti-inflammatory properties. Here, we describe a second generation of pyrazole analogs that were designed to improve their neuroprotective activity toward neurons under inflammatory conditions. Pyrazolyl oxalamide derivatives were designed to explore the effects of steric and electronic factors. Three in vitro assays were performed to evaluate the compounds' anti-neurotoxic, neuroprotective, and cytotoxic activity using human THP-1, PC-3, and SH-SY5Y cells. Five compounds significantly reduced the neurotoxic secretions from immune-stimulated microglia-like human THP-1 monocytic cells. One of these compounds was also found to protect SH-SY5Y neuronal cells when they were exposed to cytotoxic THP-1 cell supernatants. While one of the analogs was discarded due to its interference with the cell viability assay, most compounds were innocuous to the cultured cells at the concentrations used (1-100 µM). The new compounds reported herein provide a design template for the future development of lead candidates as novel inhibitors of neuroinflammation and neuroprotective drugs.


Assuntos
Microglia/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Pirazóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/toxicidade , Avaliação Pré-Clínica de Medicamentos , Humanos , Microglia/patologia , Monócitos , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/síntese química , Síndromes Neurotóxicas/patologia , Pirazóis/síntese química , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...