Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Family Med Prim Care ; 13(1): 230-234, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38482280

RESUMO

Background: The human skin, with a pH of 4 to 6, serves as a barrier against external pathogens. Alkaline handwash products (HWPs) can compromise this barrier and are widely used following the Coronavirus disease-2019 (COVID-19) pandemic. This study aims to determine the pH of a sample of HWPs in Riyadh, Saudi Arabia, and assess the effect of environmental factors on their pH. Methods: This is a cross-sectional, descriptive, observational study carried out in Riyadh, Saudi Arabia. The study involved a convenience sample of 33 liquid soaps, soap bars, and synthetic detergents (Syndets) from various brands. The pH of the handwash products was measured using laboratory-validated techniques. Data analysis was conducted using RStudio 2022 software. Results: Of the HWPs, 16 (48.5%) had a highly alkaline pH (≥10), while 14 (42.4%) had an acidic pH (4.0-6.9). Most liquid soaps were acidic (84.6%), with a mean pH of 5.9, whereas soap bars had a mean pH of 10.3. Syndets had a mean pH of 6.0. Conclusions: On average, liquid soaps and syndets offered a more physiological pH than soap bars. Liquid soaps were more affordable than synthetic detergents, making them a better value option among the three types of HWPs. Environmental factors such as exposure to hot weather did not have a significant impact on HWPs.

2.
Curr Probl Cardiol ; 49(4): 102428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311274

RESUMO

Worldwide, cardiovascular diseases (CVDs) account for the vast majority of deaths and place enormous financial strains on healthcare systems. Gold nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes, and lipids are innovative nanomaterials promising in tackling CVDs. In the setting of CVDs, these nanomaterials actively impact cellular responses due to their distinctive properties, including surface energy and topographies. Opportunities to more precisely target CVDs have arisen due to recent developments in nanomaterial science, which have introduced fresh approaches. An in-depth familiarity with the illness and its targeted mechanisms is necessary to use nanomaterials in CVDs effectively. We support the academic community's efforts to prioritize Nano-technological techniques in addressing risk factors linked with cardiovascular diseases, acknowledging the far-reaching effects of these conditions. The significant impact of nanotechnology on the early detection and treatment of cardiovascular diseases highlights the critical need for novel approaches to this pressing health problem, which is affecting people worldwide.


Assuntos
Doenças Cardiovasculares , Nanopartículas Metálicas , Nanotubos de Carbono , Humanos , Doenças Cardiovasculares/terapia , Ouro , Fatores de Risco
3.
Int J Biol Macromol ; 260(Pt 1): 129215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185301

RESUMO

In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.


Assuntos
Polpa Dentária , Regeneração , Polissacarídeos/química , Biopolímeros/química , Colágeno , Odontologia , Materiais Biocompatíveis/química
4.
Front Pharmacol ; 14: 1321517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125883

RESUMO

Aim and background: This current study aimed to load 5-flucytosine (5-FCY) into spanlastic nanovesicles (SPLNs) to make the drug more efficient as an antifungal and also to load the 5-FCY into a hydrogel that would allow for enhanced transdermal permeation and improved patient compliance. Methods: The preparation of 5-FCY-SPLNs was optimized by using a central composite design that considered Span 60 (X1) and the edge activator Tween 80 (X2) as process variables in achieving the desired particle size and entrapment efficiency. A formulation containing 295.79 mg of Span 60 and 120.00 mg of Tween 80 was found to meet the prerequisites of the desirability method. The optimized 5-FCY-SPLN formulation was further formulated into a spanlastics gel (SPG) so that the 5-FCY-SPLNs could be delivered topically and characterized in terms of various parameters. Results: As required, the SPG had the desired elasticity, which can be credited to the physical characteristics of SPLNs. An ex-vivo permeation study showed that the greatest amount of 5-FCY penetrated per unit area (Q) (mg/cm2) over time and the average flux (J) (mg/cm2/h) was at the end of 24 h. Drug release studies showed that the drug continued to be released until the end of 24 h and that the pattern was correlated with an ex-vivo permeation and distribution study. The biodistribution study showed that the 99mTc-labeled SFG that permeated the skin had a steadier release pattern, a longer duration of circulation with pulsatile behavior in the blood, and higher levels in the bloodstream than the oral 99mTc-SPNLs. Therefore, a 5-FCY transdermal hydrogel could possibly be a long-acting formula for maintenance treatment that could be given in smaller doses and less often than the oral formula.

5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004417

RESUMO

A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, improve compliance with the patients of migraines and its associated symptoms. The prepared films were evaluated for various in vitro parameters, including surface morphology, mechanical strength, disintegration test (DT), total dissolving time (TDT), drug release and drug permeation, etc., and in vivo pharmacokinetic parameters, such as area under curve (AUC), mean residence time (MRT), half-life (t1/2), time to reach maximum concentration (Tmax), and time to reach maximum concentration (Cmax). The outcomes have indicated the successful preparation of the films, as SEM has confirmed the smooth surface and uniform distribution of drugs throughout the polymer matrix. The films were found to be mechanically stable as indicated by folding endurance studies. Furthermore, the optimized formulations showed a DT of 13 ± 1 s and TDT of 42.6 ± 0.75 s, indicating prompt disintegration as well as the dissolution of the films. Albino rabbits were used for in vivo pharmacokinetics, and the outcomes were evident of improved pharmacokinetics. The drug was found to rapidly permeate across the buccal mucosa, leading to increased bioavailability of the drug: Cmax of 130 and 119 ng/mL of ITHC and EHBR, respectively, as compared to 96 (ITHC) and 90 ng/mL (EHBR) of oral solution. The conclusion can be drawn that possible reasons for the enhanced bioavailability could be the increased surface area in the form of buccal films, its rapid disintegration, and faster dissolution, which led toward the rapid absorption of the drug into the blood stream.

6.
ACS Omega ; 8(45): 42659-42666, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024719

RESUMO

Floating tablets are a new approach to extending the time a drug is in the stomach to improve therapy outcomes. Floating tablets were formulated with the drug, the polymers hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), and starch, fillers, and lubricants. The tablets were prepared using the direction compression method. The tablets' physical quality control tests were found to be within acceptable limits. The tablets extended drug release up to 12 h and were uniform in their drug contents. The swelling index of the tablets ranged from 60 ± 0.11 to 66 ± 0.14%, and the tablets were less dense than water. The floating lag time (10 ± 0.23 to 16 ± 0.09 s) and total floating time (>12 h) showed good floating behaviors. The kinetic modeling showed that the drug was released from the tablets by pseudo-diffusion, swelling, erosion, or anomalous non-Fickian diffusion. F6 (starch and CMC) showed higher n values (0.994 ± 0.04), exhibiting pseudo-zero-order drug release kinetics compared to those of other tablets. The dissolution data of the test and reference tables were not similar (P > 0.05). In terms of antimicrobial activity, the zones of inhibition of the test F6 tablet powders (5.3 ± 0.08 mm) and the reference tablet powders (5.9 ± 0.13 mm) were found to be significantly similar (P > 0.05). The study concluded that these floating tablets can improve the gastric residence time and therapeutic outcomes.

7.
Eur J Pharm Biopharm ; 193: 28-43, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858803

RESUMO

PURPOSE: The objective of the current research work was to fabricate a fosfestrol (FST)-loaded self-nanoemulsifying drug delivery system (SNEDDS) to escalate the oral solubility and bioavailability and thereby the effectiveness of FST against prostate cancer. METHODS: 32 full factorial design was employed, and the effect of lipid and surfactant mixtures on percentage transmittance, time required for self-emulsification, and drug release were studied. The optimized solid FST-loaded SNEDDS (FSTNE) was characterized for in vitro anticancer activity and Caco-2 cell permeability, and in vivo pharmacokinetic parameters. RESULTS: Using different ratios of surfactant and co-surfactant (Km) a pseudo ternary phase diagram was constructed. Thirteen liquid nano emulsion formulations (LNE-1 to LNE-13) were formulated at Km = 3:1. LNE-9 exhibited a higher % transmittance (99.25 ± 1.82 %) and a lower self-emulsification time (24 ± 0.32 s). No incompatibility was observed in FT-IR analysis. Within 20 min the solidified FST loaded LNE-9 (FSTNE) formulation showed almost complete drug release (98.20 ± 1.30 %) when compared to marketed formulation (40.36 ± 2.8 %), and pure FST (32 ± 3.3 %) in 0.1 N HCl. In pH 6.8 phosphate buffer, the release profiles are found moderately higher than in 0.1 N HCl. FSTNE significantly (P < 0.001) inhibited the PC-3 prostate cell proliferation and also caused apoptosis (P < 0.001) compared to FST. The in vitro Caco-2 cell permeability study results revealed 4.68-fold higher cell permeability of FSTNE than FST. Remarkably, 4.5-fold rise in bioavailability was observed after oral administration of FSTNE than plain FST. CONCLUSIONS: FSTNE remarkably enhanced the in vitro anticancer activity and Caco-2 cell permeability, and in vivo bioavailability of FST. Thus, FST-SNEDDS could be utilized as a potential carrier for effective oral treatment of prostate cancer.


Assuntos
Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier , Células CACO-2 , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Liberação Controlada de Fármacos , Tensoativos/química , Administração Oral , Neoplasias da Próstata/tratamento farmacológico , Emulsões/química , Nanopartículas/química , Tamanho da Partícula
8.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776007

RESUMO

The hepatitis C virus (HCV), which causes hepatitis C, is a viral infection that damages the liver and causes inflammation in the liver. New potentially effective antiviral drugs are required for its treatment owing to various issues associated with the existing medications, including moderate to severe adverse effects, higher costs, and the emergence of drug-resistant strains. The objective of the current study was to utilize computational techniques to assess the anti-HCV efficacy of certain phytochemicals against tetraspanin (CD81) and claudin 1 (CLDN1) entry proteins. A 200-nanosecond molecular dynamics (MD) simulation was employed to examine the stability of the lead-protein complexes. Free binding energy and molecular docking calculations were conducted utilizing MM/GBSA method, and the selectivity of hit compounds for CD81 and CLDN1 was determined. Five significant CD81 and CLDN1 inhibitors were identified: Petasiphenone, Silibinin, Tanshinone IIA, Taxifolin, and Topaquinone. The MM/GBSA analysis of the compounds revealed high free binding energies. All the identified compounds were stable within the CD81 and CLDN1 binding pockets. This study indicated the promising inhibitory potential of the identified compounds against CD81 and CLDN1 receptors and might develop into potential viral entry inhibitors. However, to validate the chemotherapeutic capabilities of the discovered leads extensive preclinical research is required.Communicated by Ramaswamy H. Sarma.

9.
AAPS PharmSciTech ; 24(7): 174, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594527

RESUMO

It is hypothesized that meta-iodobenzylguanidine (MIBG) complexation with etoposide (VP-16) will improve drug solubility and specificity towards BE(2)C neuroblastoma (NB) cells, 90% of which are known to be MIBG avid. After MIBG and VP-16 interaction, the dry complex was analyzed for crystalline structure, surface morphology, solubility, and size distribution by X-ray powder diffraction (P-XRD), scanning electron microscopy (SEM), infrared (FTIR) and UV spectroscopy, and dynamic light scattering. After exposure to the complex, the cell viability and decay rates were assessed by the MTS assay and estimated using exponential decay models (EDM). Multi-factorial ANOVA and an independent t-test were used to assess for cell viability and solubility data, respectively. The resulting (1: 3 w/w) VP-16: MIBG complex had a mean diameter and zeta potential of 458.5 nm and 0.951 mV, respectively. It dramatically increased the drug apparent water solubility (~ 12-folds). This was ascribed to the formation of a VP-16/MIBG nanocrystalline state mainly governed by cation-π interactions, evidenced by FTIR, SEM, and P-XRD data following the complexation. The EDM relating percent cell viability to drug concentration yielded an excellent fit (r2 > 0.95) and enabled to estimate the IC50 values of both native drug and its complex: 6.2 µM and 5.23 µM, respectively (indicating a conservation of drug anticancer activity). The statistical results were consistent with those of the exponential decay models, indicating that MIBG does not inhibit the anticancer activity of VP-16. This study indicates that the VP-16/MIBG complexation improves VP-16 solubility without antagonizing its anticancer activity. Moreover, the efficiency of the EDM for drug IC50 estimation provides alternative mathematical method for such in vitro cytotoxicity studies.


Assuntos
3-Iodobenzilguanidina , Etoposídeo/farmacologia , 3-Iodobenzilguanidina/farmacologia , Sobrevivência Celular , Difusão Dinâmica da Luz , Microscopia Eletrônica de Varredura
10.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446893

RESUMO

The current study focused on the fabrication of a well-designed, biocompatible, physically stable, non-irritating and highly porous gelatin scaffold loaded with controlled-release triamcinolone acetonide (TA) and econazole nitrate (EN) co-loaded into mesoporous silica nanoparticles (EN-TA-loaded MSNs) to provide a better long-lasting antifungal therapeutic effect with minimal unfavorable effects. Optimization of the MSNs-loaded scaffold was performed using central composite rotatable design (CCRD), where the effect of gelatin concentration (X1), plasticizer (X2) and freezing time (X3) on the entrapment of EN (Y1) and TA (Y2) and on the release of EN (Y3) and TA (Y4) from the scaffold were studied. The significant compatibility of all formulation ingredients with both drugs was established from XRD, DSC and FT-IR spectra analyses while SEM and zeta studies represented a very precise unvarying distribution of the loaded MSNs in the porous structure of the scaffold. The stability of the optimized scaffold was confirmed from zeta potential analysis (-16.20 mV), and it exhibited higher entrapment efficiency (94%) and the slower (34%) release of both drugs. During in vitro and in vivo antifungal studies against Candida albicans, the MSNs-loaded scaffold was comparatively superior in the eradication of fungal infections as a greater zone of inhibition was observed for the optimized scaffold (16.91 mm) as compared to the pure drugs suspension (14.10 mm). Similarly, the MSNs-loaded scaffold showed a decreased cytotoxicity because the cell survival rate in the scaffold presence was 89% while the cell survival rate was 85% in the case of the pure drugs, and the MSNs-loaded scaffold did not indicate any grade of erythema on the skin in comparison to the pure medicinal agents. Conclusively, the scaffold-loaded nanoparticles containing the combined therapy appear to possess a strong prospective for enhancing patients' adherence and therapy tolerance by yielding improved synergistic antifungal efficacy at a low dose with abridged toxicity and augmented wound-healing impact.


Assuntos
Antifúngicos , Nanopartículas , Humanos , Antifúngicos/farmacologia , Gelatina , Preparações de Ação Retardada/farmacologia , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estudos Prospectivos , Nanopartículas/química , Portadores de Fármacos/química
11.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049892

RESUMO

The objective of this study was to synthesize a novel choline hydroxide ionic liquid-based tooth bleaching gel. Ionic liquid-based gels were synthesized and characterized using FTIR along with pH testing. Tooth sample preparation was carried out in line with ISO 28399:2020. The effects of synthesized gels on tooth samples were tested. Tooth samples were stained and grouped into three experimental groups: EAI (22% choline hydroxide gel), EAII (44% choline hydroxide gel), and EB (choline citrate gel) and two control groups: CA (commercial at-home 16% carbamide peroxide gel) and CB (deionized water). The tooth color analysis, which included shade matching with the Vitapan shade guide (n = 2), and digital colorimetric analysis (n = 2) were evaluated. The surface characteristics and hardness were analyzed with 3D optical profilometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Microhardness testing (n = 3), respectively. The tooth color analysis (Vitapan shade guide) revealed that all the tooth samples treated with synthesized choline citrate gel (EB) showed an A1 shade as compared to the other four groups, giving a range of shades. An analysis of the ΔE values from digital colorimetry; EAI, EAII, CA, and CB showed ΔE values in a range that was clinically perceptible at a glance. However, EB showed the highest value of ΔE. The mean microhardness values for the five groups showed that the effects of three experimental gels i.e., 44% choline hydroxide, 22% choline hydroxide, and choline citrate, on the microhardness of the tooth samples were similar to that of the positive control, which comprised commercial at-home 16% carbamide peroxide gel. SEM with EDX of three tested subgroups was closely related in surface profile, elemental composition, and Ca/P ratio. The roughness average values from optical profilometry of four tested subgroups lie within approximately a similar range, showing a statistically insignificant difference (p > 0.05) between the tested subgroups. The synthesized novel experimental tooth bleaching gels displayed similar tooth bleaching actions without any deleterious effects on the surface characteristics and microhardness of the treated tooth samples when compared with the commercial at-home tooth bleaching gel.


Assuntos
Líquidos Iônicos , Clareamento Dental , Clareamento Dental/métodos , Peróxido de Carbamida , Peróxidos/química , Ureia/química , Análise Custo-Benefício , Géis , Peróxido de Hidrogênio/química
12.
Heliyon ; 9(3): e14668, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994394

RESUMO

Marine bio-resources are being extensively researched as a priceless supply of substances with therapeutic potential. This work report the first time attempt made towards the green synthesis of gold nanoparticles (AuNPs) using the aqueous extract of marine soft coral (SCE), Sarcophyton crassocaule. The synthesis was conducted under optimized conditions and the visual coloration of reaction mixture changed from yellowish to ruby red at 540 nm. The electron microscopic (TEM, SEM) studies exhibited spherical and oval shaped SCE-AuNPs in the size ranges of 5-50 nm. The organic compounds present in SCE were primarily responsible for the biological reduction of gold ions validated by FT-IR while the zeta potential confirmed the overall stability of SCE-AuNPs. The synthesized SCE-AuNPs exhibited variety of biological efficacies like antibacterial, antioxidant and anti-diabetic in nature. The biosynthesized SCE-AuNPs demonstrated remarkable bactericidal efficacy against clinically significant bacterial pathogens with inhibition zones of mm. Additionally, SCE-AuNPs exhibited greater antioxidant capacity in terms of DPPH: 85 ± 0.32% and RP: 82 ± 0.41%). The ability of enzyme inhibition assays to inhibit α-amylase (68 ± 0.21%) and α-glucosidase (79 ± 0.2%) was quite high. The study also highlighted the spectroscopic analysis of the biosynthesized SCE-AuNPs' catalytic effectiveness of 91% in the reduction processes of the perilous organic dyes, exhibiting pseudo-first order kinetics.

13.
Cureus ; 15(12): e50163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38192925

RESUMO

Background Gestational diabetes mellitus (GDM) is a condition characterized by impaired glucose tolerance that develops during pregnancy. The prevalence of GDM is increasing globally, including in the Al-Baha region of Saudi Arabia. However, there needs to be more data on the awareness of women in this region regarding GDM and its associated risks. This research aimed to evaluate the level of awareness among women in the Al-Baha region regarding GDM. Methodology This study followed an observational cross-sectional design conducted from April 2023 to December 2023. A simple random sampling technique was used to select 457 participants from the resident women of reproductive age in the Al-Baha region. Data were collected through a self-administered questionnaire that assessed knowledge and awareness of GDM risk factors, assessment, therapy, and implications. The questionnaire included a 12-item section evaluating GDM awareness, with correct answers receiving a score of 1. Descriptive statistics were used to analyze the data with Statistical Product and Service Solutions (SPSS, version 28) (IBM SPSS Statistics for Windows, Armonk, NY). Results The majority of participants fell into the age group of more than 36 years (n=207, 45.3%), with a significant proportion having completed university/diploma education (n=282, 61.7%), and most of them worked outside the health sector (n=283, 61.9%). Approximately 27.8% correctly identified that the number of pregnancies does not increase the chance of developing GDM. Only (n=48, 10.5%) accurately identified the usual time for diagnosing GDM in the absence of risk factors, which is between weeks 24 and 28 of pregnancy. Similarly, 26.0% (119 participants) correctly recognized a history of a previous pregnancy with a child weighing more than 4.5 kg as a factor that increases the suspicion of developing GDM in the future. However, it is important to note that the majority of participants (n=311, 68.1%) had a poor level of awareness regarding GDM. Conclusion The findings revealed that the overall level of knowledge about GDM was poor, with less than 10% of participants demonstrating adequate awareness. The study also highlighted that over 80% of the participants were unaware of GDM.

14.
Life (Basel) ; 12(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35454976

RESUMO

Docetaxel (DTX) is classified as a class IV drug that exhibits poor aqueous solubility (6-7 µg/mL in water) and permeability (P-glycoprotein substrate). The main objective of this study was to construct, characterize, and evaluate docetaxel loaded nanomicellar formulation in vitro for oral delivery to enhance the absorption and bioavailability of DTX, as well as to circumvent P-gp efflux inhibition. Formulations were prepared with two polymeric surfactants, hydrogenated castor oil-40 (HCO-40) and D-α-Tocopherol polyethylene glycol 1000 succinate (VIT E TPGS) with solvent evaporation technique, and the resulting DTX nanomicellar formulations were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Proton NMR, FT-IR, and XRD data indicated that DTX was completely encapsulated within the hydrophobic core of the nanomicelles in its amorphous state. TEM data revealed a smooth spherical shape of the nanomicellar formulation. The optimized formulation (F-2) possessed a mean diameter of 13.42 nm, a zeta potential of -0.19 mV, with a 99.3% entrapment efficiency. Dilution stability study indicated that nanomicelles were stable up to 100-fold dilution with minimal change in size, poly dispersity index (PDI), and zeta potential. In vitro cytotoxicity study revealed higher anticancer activity of DTX nanomicelles at 5 µM compared to the native drug against breast cancer cell line (MCF-7) cells. The LC-MS data confirmed the chemical stability of DTX within the nanomicelles. In vitro drug release study demonstrated faster dissolution of DTX from the nanomicelles compared to the naked drug. Our experimental results exhibit that nanomicelles could be a drug delivery system of choice to encapsulate drugs with low aqueous solubility and permeability that can preserve the stability of the active constituents to provide anticancer activity.

15.
Assay Drug Dev Technol ; 19(8): 526-538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813380

RESUMO

It is hypothesized that etoposide/VP-16 nanomicellar formulation (VP-16 NMF) utilizing D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) can improve etoposide solubility and anticancer activity. The following four different concentrations of TPGS: 3, 6, 8, and 10 wt% were used to solubilize the drug. Among these four formulations, 10 wt% of TPGS loaded with VP-16 NMF dramatically enhanced etoposide apparent solubility by 26-folds compared with the native drug. The physicochemical properties of the optimized formulation were further analyzed by dynamic light scattering, X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance (1HNMR) and Fourier transform infrared spectroscopy. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to assess solubility and intracellular uptake of the drug from the NMF. Cell viability assay ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium solution [MTS]) was performed on MCF-7 and MCF-10A cell lines to assess intracellular uptake and anticancer activity of etoposide. The MTS assay results showed that the VP-16 NMF platform provides a higher anticancer activity than the native VP-16 on the MCF-7 cells line as it integrates a dual anticancer activity of VP-16 and TPGS. LC-MS/MS data showed a threefold increase in cellular uptake of VP-16 NMF in MCF-7 cell line compared with the native etoposide. These data suggest that an optimal TPGS concentration can improve VP-16 bioavailability and efficacy with potential benefits for chemotherapy.


Assuntos
Espectrometria de Massas em Tandem , Disponibilidade Biológica , Cromatografia Líquida , Etoposídeo/farmacologia , Humanos , Solubilidade
16.
Assay Drug Dev Technol ; 19(8): 508-525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34757813

RESUMO

It is hypothesized that L-arginine (ARG) can improve etoposide (VP-16) water solubility while preserving its anticancer activity. Factorial design is used to identify conditions for optimum drug aqueous solubility after freeze-drying. The physicochemical properties of the optimized formulation is further analyzed by X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance, and fourier transform infrared spectroscopy. Drug stability in formulation is analyzed using mass spectrometry based fragmentation analysis. Liquid chromatography tandem mass spectrometry and cell viability assay on Michigan Cancer Foundation-7 (MCF-7) cell line are performed to assess the drug cellular uptake and the anticancer activity, respectively. At the VP-16: ARG ratio of 4:10 (w/w), the drug apparent solubility increased significantly (∼65-folds) with a 3.5-fold improvement in the drug dissolution rate. The interaction between VP-16 and ARG transforms the drug from crystalline to amorphous solid state. VP-16-ARG complex in lower native drug concentration range (50-300 µM) has lower anticancer activity compared with native VP-16, due to reduced intracellular transport of the more hydrophilic complex as indicated by the cell viability assay and confirmed by cell uptake study. However, at higher drug concentrations (500 µM) the complex's higher anticancer activity is ascribed to the synergistic effect between ARG and VP-16. These data suggest that an optimal ARG concentration can have positive effects with potential benefits for chemotherapy.


Assuntos
Arginina , Água , Arginina/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Etoposídeo/farmacologia , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...