Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(47): e2202390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36069995

RESUMO

Single-crystal halide perovskites exhibit photogenerated-carriers of high mobility and long lifetime, making them excellent candidates for applications demanding thick semiconductors, such as ionizing radiation detectors, nuclear batteries, and concentrated photovoltaics. However, charge collection depreciates with increasing thickness; therefore, tens to hundreds of volts of external bias is required to extract charges from a thick perovskite layer, leading to a considerable amount of dark current and fast degradation of perovskite absorbers. However, extending the carrier-diffusion length can mitigate many of the anticipated issues preventing the practical utilization of perovskites in the abovementioned applications. Here, single-crystal perovskite solar cells that are up to 400 times thicker than state-of-the-art perovskite polycrystalline films are fabricated, yet retain high charge-collection efficiency in the absence of an external bias. Cells with thicknesses of 110, 214, and 290 µm display power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7%, respectively. The remarkable persistence of high PCEs, despite the increase in thickness, is a result of a long electron-diffusion length in those cells, which was estimated, from the thickness-dependent short-circuit current, to be ≈0.45 mm under 1 sun illumination. These results pave the way for adapting perovskite devices to optoelectronic applications in which a thick active layer is essential.

2.
J Am Chem Soc ; 144(7): 3182-3191, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157426

RESUMO

With the development of ultralow-dose (scanning) transmission electron microscopy ((S)TEM) techniques, atomic-resolution imaging of highly sensitive nanomaterials has recently become possible. However, applying these techniques to the study of sensitive bulk materials remains challenging due to the lack of suitable specimen preparation methods. We report that cryogenic focused ion beam (cryo-FIB) can provide a solution to this challenge. We successfully extracted thin specimens from metal-organic framework (MOF) crystals and a hybrid halide perovskite single-crystal film solar cell using cryo-FIB without damaging the inherent structures. The high quality of the specimens enabled the subsequent (S)TEM and electron diffraction studies to reveal complex unknown local structures at an atomic resolution. The obtained structural information allowed us to resolve planar defects in MOF HKUST-1, three-dimensionally reconstruct a concomitant phase in MOF UiO-66, and discover a new CH3NH3PbI3 structure and locate its distribution in a single-crystal film perovskite solar cell. This proof-of-concept study demonstrates that cryo-FIB has a unique ability to handle highly sensitive materials, which can substantially expand the range of applications for electron microscopy.

3.
J Phys Chem Lett ; 11(3): 716-723, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31933373

RESUMO

Metal halide perovskite quantum wells (PQWs) are quantum and dielectrically confined materials exhibiting strongly bound excitons. The exciton transition dipole moment dictates absorption strength and influences interwell coupling in dipole-mediated energy transfer, a process that influences the performance of PQW optoelectronic devices. Here we use transient reflectance spectroscopy with circularly polarized laser pulses to investigate the optical Stark effect in dimensionally pure single crystals of n = 1, 2, and 3 Ruddlesden-Popper PQWs. From these measurements, we extract in-plane transition dipole moments of 11.1 (±0.4), 9.6 (±0.6) and 13.0 (±0.8) D for n = 1, 2 and 3, respectively. We corroborate our experimental results with density functional and many-body perturbation theory calculations, finding that the nature of band edge orbitals and exciton wave function delocalization depends on the PQW "odd-even" symmetry. This accounts for the nonmonotonic relationship between transition dipole moment and PQW dimensionality in the n = 1-3 range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...