Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3338, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336990

RESUMO

Previously, we showed that fluvastatin treatment induces myofibrillar damage and mitochondrial phenotypes in the skeletal muscles of Drosophila. However, the sequential occurrence of mitochondrial phenotypes and myofibril damage remains elusive. To address this, we treated flies with fluvastatin for two and five days and examined their thorax flight muscles using confocal microscopy. In the two-day fluvastatin group, compared to the control, thorax flight muscles exhibited mitochondrial morphological changes, including fragmentation, rounding up and reduced content, while myofibrils remained organized in parallel. In the five-day fluvastatin treatment, not only did mitochondrial morphological changes become more pronounced, but myofibrils became severely disorganized with significantly increased thickness and spacing, along with myofilament abnormalities, suggesting myofibril damage. These findings suggest that fluvastatin-induced mitochondrial changes precede myofibril damage. Moreover, in the five-day fluvastatin group, the mitochondria demonstrated elevated H2O2 and impaired fatty acid oxidation compared to the control group, indicating potential mitochondrial dysfunction. Surprisingly, knocking down Hmgcr (Drosophila homolog of HMGCR) showed normal mitochondrial respiration in all parameters compared to controls or five-day fluvastatin treatment, which suggests that fluvastatin-induced mitochondrial dysfunction might be independent of Hmgcr inhibition. These results provide insights into the sequential occurrence of mitochondria and myofibril damage in statin-induced myopathy for future studies.


Assuntos
Peróxido de Hidrogênio , Doenças Mitocondriais , Animais , Fluvastatina , Espécies Reativas de Oxigênio , Mitocôndrias , Músculo Esquelético , Drosophila , Ácidos Graxos Monoinsaturados/efeitos adversos
3.
Cureus ; 15(6): e40943, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37503477

RESUMO

INTRODUCTION: Obesity (Obe) is a chronic metabolic disorder usually complicated by impaired fibrinolytic activity. Apigenin (Api) is one of the flavonoids that have anti-adiposity effects. This study aimed to explore the therapeutic potential of Api in high-fat diet (HFD)-induced obese rats. METHODS: Twenty-four Wistar adult male rats were randomly allocated into control group, supplemented with a normal pellet diet (NPD); Api group, supplemented with Api (10 mg/kg) for eight weeks; Obe group, obesity was induced by feeding HFD for eight weeks; and Obe/Api group, obese rats supplemented with Api for eight weeks. Body mass index (BMI), homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), total superoxide dismutase (t-SOD) activity, and plasminogen activator inhibitor-1 (PAI-1) were measured. RESULTS: Compared to the control group, Obe group exhibited a significant increase in BMI, HOMA-IR, TNF-α, MDA, and PAI-1. These results were also associated with a significant decrease in serum t-SOD activity. Supplementation of Api alleviated the measured deteriorated parameters and ameliorated visceral adiposity in obese rats. CONCLUSION: This study provides compelling evidence regarding a promising role for Api in ameliorating the impairment of fibrinolytic activity in an Obe animal model. The observed effects are likely mediated through Api's anti-obesity properties, as well as its indirect modulation of PAI-1, oxidative stress, and inflammation. Future clinical studies are recommended that may make benefit of the preclinical therapeutic use of apigenin in obesity-associated fibrinolytic dysfunctions.

4.
J Gerontol A Biol Sci Med Sci ; 78(11): 1964-1972, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37431946

RESUMO

Statins are widely used for cardiovascular disease prevention but their effects on cognition remain unclear. Statins reduce cholesterol concentration and have been suggested to provide both beneficial and detrimental effects. Our aim was to investigate the cross-sectional and longitudinal association between statin use and cognitive performance, and whether blood low-density lipoprotein, high-density lipoprotein, triglycerides, glucose, C-reactive protein, and vitamin D biomarkers mediated this association. We used participants from the UK biobank aged 40-69 without neurological and psychiatric disorders (n = 147 502 and n = 24 355, respectively). We performed linear regression to evaluate the association between statin use and cognitive performance and, mediation analysis to quantify the total, direct, indirect effects and the proportion meditated by blood biomarkers. Statin use was associated with lower cognitive performance at baseline (ß = -0.40 [-0.53, -0.28], p = <.0001), and this association was mediated by low-density lipoprotein (proportion mediated = 51.4%, p = .002), C-reactive protein (proportion mediated = -11%, p = .006) and blood glucose (proportion mediated = 2.6%, p = .018) concentrations. However, statin use was not associated with cognitive performance, measured 8 years later (ß = -0.003 [-0.11, 0.10], p = .96). Our findings suggest that statins are associated with lower short-term cognitive performance by lowering low-density lipoprotein and raising blood glucose concentrations, and better performance by lowering C-reactive protein concentrations. In contrast, statins have no effect on long-term cognition and remain beneficial in reducing cardiovascular risk factors.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Lipoproteínas LDL , Proteína C-Reativa/metabolismo , Glicemia , Estudos Transversais , Biomarcadores
5.
Cells ; 11(22)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428957

RESUMO

The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Animais , Humanos , Drosophila melanogaster/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Canais de Cloreto/metabolismo , Fluvastatina/efeitos adversos , Doenças Musculares/genética , Drosophila/metabolismo , Locomoção , Fenótipo
6.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326421

RESUMO

The statin drug target, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), is strongly linked to body mass index (BMI), yet how HMGCR influences BMI is not understood. In mammals, studies of peripheral HMGCR have not clearly identified a role in BMI maintenance and, despite considerable central nervous system expression, a function for central HMGCR has not been determined. Similar to mammals, Hmgcr is highly expressed in the Drosophila melanogaster brain. Therefore, genetic and pharmacological studies were performed to identify how central Hmgcr regulates Drosophila energy metabolism and feeding behavior. We found that inhibiting Hmgcr, in insulin-producing cells of the Drosophila pars intercerebralis (PI), the fly hypothalamic equivalent, significantly reduces the expression of insulin-like peptides, severely decreasing insulin signaling. In fact, reducing Hmgcr expression throughout development causes decreased body size, increased lipid storage, hyperglycemia, and hyperphagia. Furthermore, the Hmgcr induced hyperphagia phenotype requires a conserved insulin-regulated α-glucosidase, target of brain insulin (tobi). In rats and mice, acute inhibition of hypothalamic Hmgcr activity stimulates food intake. This study presents evidence of how central Hmgcr regulation of metabolism and food intake could influence BMI.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Drosophila melanogaster/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hiperfagia , Insulina/metabolismo , Mamíferos/metabolismo , Camundongos , Ratos
7.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056136

RESUMO

Statins, HMG Coenzyme A Reductase (HMGCR) inhibitors, are a first-line therapy, used to reduce hypercholesterolemia and the risk for cardiovascular events. While sleep disturbances are recognized as a side-effect of statin treatment, the impact of statins on sleep is under debate. Using Drosophila, we discovered a novel role for Hmgcr in sleep modulation. Loss of pan-neuronal Hmgcr expression affects fly sleep behavior, causing a decrease in sleep latency and an increase in sleep episode duration. We localized the pars intercerebralis (PI), equivalent to the mammalian hypothalamus, as the region within the fly brain requiring Hmgcr activity for proper sleep maintenance. Lack of Hmgcr expression in the PI insulin-producing cells recapitulates the sleep effects of pan-neuronal Hmgcr knockdown. Conversely, loss of Hmgcr in a different PI subpopulation, the corticotropin releasing factor (CRF) homologue-expressing neurons (DH44 neurons), increases sleep latency and decreases sleep duration. The requirement for Hmgcr activity in different neurons signifies its importance in sleep regulation. Interestingly, loss of Hmgcr in the PI does not affect circadian rhythm, suggesting that Hmgcr regulates sleep by pathways distinct from the circadian clock. Taken together, these findings suggest that Hmgcr activity in the PI is essential for proper sleep homeostasis in flies.

8.
Front Biosci (Landmark Ed) ; 26(12): 1453-1463, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34994160

RESUMO

IMPORTANCE: Statins have been linked to an increased risk for insomnia, but the literature is controversial. Moreover, it is unknown, if the potential effects are directly related to the inhibition of the statin target HMGCR, the subsequently lowered cholesterol levels, or other off-target effects of statins. AIMS: To investigate the association of statin treatment and genetic proxies of cholesterol lowering drugs with the risk for insomnia and chronotype in a large population-based cohort. METHODS: A cross-sectional cohort study based on baseline data collected between 2006-2010 in UK biobank cohort was conducted. European participants without any history of psychiatric/neurological disorders or of stroke and with available genetic data as well as information on statin use were included in the present study. Self-reported measures of insomnia and chronotype were analysed (a) in statin users versus control subjects, (b) subjects carrying single nucleotide polymorphisms (SNPs) in the HMGCR gene, which are associated with reduced enzymatic function and lower cholesterol levels (rs17238484 and rs12916) and (c) subjects carrying a SNP in the PCSK9 gene (rs1159147), which leads to lower cholesterol levels independent of HMGCR. The main analysis were performed using multivariable regression models. Statin treatment and SNPs in HMGCR and PCSK9 genes were used as exposures and main outcomes were insomnia and chronotype. RESULTS: A total of 206,801participants (mean [SD] age, 57.5 [7.9] years; 56% women; 20% statin users) were included in the present study. Statin users had an increased risk of insomnia compared to controls (odds ratio [95% CI], 1.07 [1.03 to 1.11]; p = 1.42 × 10-4). A similar effect was observed for PCSK9 rs11591147-T allele (1.07 [1.01-1.14]; 0.014), while the two gene variants of HMGCR were associated with a reduced risk for insomnia (rs17238484-G: 0.97 [0.95 to 0.99]; 0.014 and rs12916-T: 0.97 [0.96 to 0.99]; 0.002). In regard to chronotype, there was no effect of either statin treatment or HMGCR SNPs, but the PCSK9 rs11591147-T allele was associated with a higher evening preference (1.17 [1.06 to 1.29]; 0.001). CONCLUSION: Our data suggests that statin treatment can pose an increased risk for insomnia in in the European population. Interestingly, there was no agreement between the effects of statins and the effects of reduced HMGCR activity based on genetic variants, suggesting that the observed unfavourable effect of statins on sleep is conveyed through other targets. This further explains why the literature on statin effects on sleep is not conclusive. Finally our data encourage further investigations into the molecular processes linking statins, HMGCR and PCSK9 to sleep behaviour.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Distúrbios do Início e da Manutenção do Sono , LDL-Colesterol , Estudos Transversais , Feminino , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertase 9/genética , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/genética
9.
Sci Rep ; 10(1): 6187, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277109

RESUMO

To reveal new insights into statin cognitive effects, we performed an observational study on a population-based sample of 245,731 control and 55,114 statin-taking individuals from the UK Biobank. Cognitive performance in terms of reaction time, working memory and fluid intelligence was analysed at baseline and two follow-ups (within 5-10 years). Subjects were classified depending on age (up to 65 and over 65 years) and treatment duration (1-4 years, 5-10 years and over 10 years). Data were adjusted for health- and cognition-related covariates. Subjects generally improved in test performance with repeated assessment and middle-aged persons performed better than older persons. The effect of statin use differed considerably between the two age groups, with a beneficial effect on reaction time in older persons and fluid intelligence in both age groups, and a negative effect on working memory in younger subjects. Our analysis suggests a modulatory impact of age on the cognitive side effects of statins, revealing a possible reason for profoundly inconsistent findings on statin-related cognitive effects in the literature. The study highlights the importance of characterising modifiers of statin effects to improve knowledge and shape guidelines for clinicians when prescribing statins and evaluating their side effects in patients.


Assuntos
Transtornos Cognitivos/diagnóstico , Cognição/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Fatores Etários , Idoso , Estudos de Casos e Controles , Transtornos Cognitivos/induzido quimicamente , Feminino , Seguimentos , Humanos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Resolução de Problemas/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...