Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Pharmaceutics ; 16(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065649

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening condition in which the lungs fail to provide sufficient oxygen to the body's vital organs. It is commonly associated with COVID-19 patients. Severe cases of COVID-19 can lead to lung damage and organ failure due to an immune response in the body. To mitigate these effects, corticosteroids, which are known for their anti-inflammatory properties, have been suggested as a potential treatment option. The primary focus of this study was to assess the impact of various corticosteroid administration methods on the outcomes of patients with COVID-19. Methods: The current study was conducted on COVID-19 patients divided into three groups. The first group was administered 6 mg of intravenous (IV) dexamethasone; the second group received 1 mg/kg of IV methylprednisolone (methylprednisolone); and the third group received budesonide respirable solution at a dosage of 1mg twice daily. The neubilizer used was a vibrating mesh nebulizer (VMN). All patients received standard care. We found that dexamethasone administered intravenously led to a significant reduction in C-reactive protein levels, surpassing the effectiveness of both IV methylprednisolone and inhaled budesonide. Oxygen saturation without mask change over time showed statistically significant differences (p = 0.004) in favor of the budesonide and dexamethasone groups for all days. Individuals who received methylprednisolone showed a significant decrease in mortality rate and an extended survival duration, with statistical significance observed at p = 0.024. The rest of the parameters, including ferritin, lymphocytes, total leukocyte count, platelets, hemoglobin, urea, serum potassium, serum sodium, serum creatinine, serum glutamic-pyruvic transaminase, serum glutamic-oxaloacetic transaminase, uric acid, albumin, globulin, erythrocyte sedimentation rate, international normalized ratio, oxygen saturation with flow, and oxygen flow, showed no statistically significant differences between the three drugs. In conclusion, treatment with IV methylprednisolone (1 mg/kg) resulted in a shorter hospital stay, decreased reliance on ventilation, and improved health outcomes for COVID-19 patients compared to using dexamethasone at a daily dosage of 6 mg or budesonide respirable solution at a dosage of 1mg twice daily.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38874841

RESUMO

Alzheimer's disease (AD) is the predominant etiology of dementia, impacting a global population of approximately 50 million individuals. In the field of medicinal chemistry, there have been notable advancements in the utilization of monoamine oxidase (MAO) and cholinesterase (ChE) inhibitors for the purpose of addressing the neurotransmitter shortage associated with Alzheimer's disease (AD). A selection of previously synthesized 3-Phenylcoumarin derivatives (5a-m) were selected for examination in the pursuit of potential multi-targeting inhibitors of MAO-A, MAO-B, AChE, and BChE. The stability and reactivity of the compounds were investigated through the utilization of density functional theory (DFT) simulations. Subsequently, a CoMFA technique, grounded in 3D-QSAR principles, was employed to construct a model and predict the inhibitory properties of analogues belonging to the class of 3-phenylcoumarin derivatives. Through the application of molecular docking methodologies, we have employed predictive analyses to determine the potential binding interactions and stability of the drugs under investigation. The results obtained from the present investigation indicate that the 3-phenylcoumarin derivatives possess a reactive electronic characteristic that is crucial for their anti-cholinesterase activity. Compound 5a demonstrated a noteworthy binding score with AChE, BChE, MAO-A and MAO-B, respectively, indicating a robust binding affinity.

3.
Heliyon ; 10(2): e24075, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293404

RESUMO

Staphylococcus aureus is a highly prevalent and aggressive human pathogen causing a wide range of infections. This study aimed to explore the potential of Patuletin, a rare natural flavone, as an anti-virulence agent against S. aureus. At a sub-inhibitory concentration (1/4 MIC), Patuletin notably reduced biofilm formation by 27 % and 23 %, and decreased staphyloxanthin production by 53 % and 46 % in Staphylococcus aureus isolate SA25923 and clinical isolate SA1, respectively. In order to gain a more comprehensive understanding of the in vitro findings, several in silico analyses were conducted. Initially, a 3D-flexible alignment study demonstrated a favorable structural similarity between Patuletin and B70, the co-crystallized ligand of CrtM, an enzyme that plays a pivotal role in the biosynthesis of staphyloxanthin. Molecular docking highlighted the strong binding of Patuletin to the active site of CrtM, with a high affinity of -20.95 kcal/mol. Subsequent 200 ns molecular dynamics simulations, along with MM-GBSA, ProLIF, PLIP, and PCAT analyses, affirmed the stability of the Patuletin-CrtM complex, revealing no significant changes in CrtM's structure upon binding. Key amino acids crucial for binding were also identified. Collectively, this study showcased the effective inhibition of CrtM activity by Patuletin in silico and its attenuation of key virulence factors in vitro, including biofilm formation and staphyloxanthin production. These findings hint at Patuletin's potential as a valuable therapeutic agent, especially in combination with antibiotics, to counter antibiotic-resistant Staphylococcus aureus infections.

4.
RSC Adv ; 13(51): 35853-35876, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38116168

RESUMO

This work presents the synthesis and in vitro, and in silico analyses of new thiadiazole derivatives that are designed to mimic the pharmacophoric characteristics of vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. A comprehensive evaluation of the inhibitory properties of the synthesized thiadiazole derivatives against the cancer cell lines MCF-7 and HepG2 identified several auspicious candidates. Among them, compound 14 showed remarkably low IC50 values of 0.04 µM and 0.18 µM against MCF-7 and HepG2, respectively. VEGFR-2 inhibitory evaluation of compound 14 revealed a promising IC50 value in the nanomolar range (103 nM). Further examination of the cell cycle revealed that compound 14 has the ability to stop the progression of the cell cycle in MCF-7 cells via G0-G1 phase arrest. Interestingly, compound 14 also demonstrated a noteworthy pro-apoptotic effect in MCF-7 cells, with notable increases in early apoptosis (16.53%) and late apoptosis (29.57%), along with a slight increase in the population of necrotic cells (5.95%). Furthermore, compound 14 showed a significant drop in MCF-7 cells' ability to migrate and heal wounds. Additionally, compound 14 promoted apoptosis by boosting BAX (6-fold) while lowering Bcl-2 (6.2-fold). The binding affinities of the synthesized candidates to their target (VEGFR-2) were confirmed by computational investigations, including molecular docking, principal component analysis of trajectories (PCAT), and molecular dynamics (MD) simulations. Additionally, compound 14's stability and reactivity were investigated using density functional theory (DFT). These thorough results highlight compound 14's potential as a lead contender for additional research in the creation of anticancer drugs that target VEGFR-2. This work establishes a foundation for promising thiadiazole derivatives for future therapeutic developments in anticancer- and angiogenesis-related scientific fields.

5.
Nat Prod Res ; : 1-14, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100380

RESUMO

This study aimed to isolate and identify three prenylflavonoids (cannflavin A, B, and C) from Cannabis sativa leaves using different chromatographic techniques. The potential of the isolated compounds against SARS-CoV-2 was suggested through several in silico analysis. Structural similarity studies against nine co-crystallized ligands of SARS-CoV-2's proteins indicated the similarities of the isolated cannflavins with the SARS-CoV-2 Papain-Like Protease (PLP) ligand, Y95. Then, flexible allignment study confirmed this similarity. Docking experiments showed successful binding of all cannflavins within the active pocket of PLP, with energies comparable to Y95. Among them, cannflavin A demonstrated the most similar binding mode, while cannflavin C exhibited the best energy. Molecular dynamics (MD) simulations and MM-GPSA confirmed the accurate binding of cannflavin A to the PLP. In silico ADMET studies indicated favourable drug-like properties for all three compounds, suggesting their potential as anti-SARS-CoV-2 agents. Further In vitro and In vivo investigations are necessary to validate these findings and establish their efficacy and safety profiles.

6.
Future Med Chem ; 15(22): 2065-2086, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955128

RESUMO

Background: VEGFR-2 is a key regulator of cancer cell proliferation, migration and angiogenesis. Aim: Development of thieno[2,3-d]pyrimidine derivatives as potential anti-cancer agents targeting VEGFR-2. Methods: Seven in vitro and nine in silico studies were conducted. Results: Compound 10d demonstrated strong anticancer potential, boosting apoptosis based on VEGFR-2 inhibition. It arrested the S phase of the cell cycle and upregulated the apoptotic factors. Docking and molecular dynamics simulation studies confirm the stability of the VEGFR-2-10d complex and suggest that these compounds have good binding affinities to VEGFR-2. In addition, the drug-likeness was confirmed. Conclusion: Thieno[2,3-d]pyrimidines, particularly compound 10d, has good anticancer effects and may contribute to the development of new anticancer therapies.

7.
Pathol Res Pract ; 252: 154924, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956639

RESUMO

BACKGROUND: This study focuses on the development and evaluation of (E)-N-(3-(1-(2-(4-bromobenzoyl)hydrazono)ethyl)phenyl)nicotinamide (BHEPN) as a potential inhibitor of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). METHODS: Computational investigations as density function theory (DFT), docking, molecular dynamics (MD) simulations, and ADMET) in addition to in vitro (VEGFR-2 inhibition, cytotoxicity against HepG2 and MCF-7 cancer cell lines, selectivity index, cells cycle analysis, apoptosis investigation, and cells migration assay) studies were conducted. RESULTS: DFT calculations determined the three-dimensional structure and indicated the reactivity of BHEPN. Molecular docking, and MD simulations analysis showed the BHEPN's binding affinity and its potential as a VEGFR-2 inhibitor. ADMET assessments predicted BHEPN's safety and drug-like characteristics. In vitro investigations confirmed the inhibition of VEGFR-2 with an IC50 value of 0.320 ± 0.012 µM. BHEPN also exhibited remarkable cytotoxic effects against HepG2 and MCF-7 cancer cell lines, with IC50 values of 0.19 ± 0.01 µM and 1.18 ± 0.01 µM, respectively, outperforming Sorafenib's IC50 values (2.24 ± 0.06 µM and 3.17 ± 0.01 µM), respectively. Notably, BHEPN displayed a higher IC50 value of 4.11 ± 0 µM against the non-carcinogenic Vero cell lines, indicating selectivity index values of 21.6 and 3.4 against the tested cancer cell lines, respectively. In a flow cytometry assay, BHEPN induced HepG2 cell cycle arrest at the G1/S phase. Moreover, BHEPN increased the incidence of early and late apoptosis in HepG2 cell lines (from 1.38% and 0.22%) in control cells to (4.11-26.02%) in the treated cells, respectively. Additionally, the percentage of necrosis raised to 13.39%, in contrast to 0.62% in control cells. Finally, BHEPN was able to reduce the migration and wound healing abilities in HepG2 cells to 38.89% compared to 87.92% in untreated cells after 48 h. These in vitro results aligned with the computational predictions, providing strong evidence of BHEPN's efficacy and safety in anticancer applications. CONCLUSIONS: BHEPN is a promising candidate for the development of novel anticancer agents through further in vitro and in vivo investigations.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Morte Celular , Apoptose , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores de Proteínas Quinases
8.
Protein J ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940790

RESUMO

AKR1B1 and AKR1B10 are important members of aldo-keto reductase family which plays a significant role in cancer progression by modulating cellular metabolism. These enzymes are involved in various metabolic processes, including the synthesis and metabolism of hormones, detoxification of reactive aldehydes, and the reduction of various endogenous and exogenous compounds. This study aimed to explore the potential of strychnine as an anticancer agent by targeting AKR1B1 and AKR1B10 via drug repurposing approach. To assess the drug-like properties of strychnine, a physiologically based pharmacokinetic (PKPB) model and High Throughput Pharmacokinetics (HTPK) approach were employed. The obtained results fell within the expected range for drug molecules, confirming its suitability for further investigation. Additionally, density functional theory (DFT) studies were conducted to gain insight into the electronic properties contributing to the drug molecule's reactivity. Building upon the promising DFT results, molecular docking analysis using the AutoDock tool was performed to examine the binding interactions between strychnine and the proposed targets, AKR1B1 and AKR1B10. Findings from the molecular docking studies suggested a higher probability of strychnine acting as an inhibitor of AKR1B1 and AKR1B10 with docking scores of - 30.84 and - 29.36 kJ/mol respectively. To validate the stability of the protein-ligand complex, Molecular Dynamic Simulation (MDS) studies were conducted, revealing the formation of a stable complex between the enzymes and strychnine. This comprehensive approach sheds light on the potential effectiveness of strychnine as a treatment for breast, lung, liver, and pancreatic cancers, as well as related malignancies. The novel insights gained from the physiologically based pharmacokinetic modeling, density functional theory, molecular docking, and molecular dynamics simulations collectively support the prospect of strychnine as a promising molecule for anticancer therapy. Further investigations are warranted to validate these findings and explore the therapeutic potential of strychnine in preclinical and clinical settings.

9.
Curr Pharm Des ; 29(36): 2902-2920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031271

RESUMO

OBJECTIVES: This study aims to design and evaluate (in silico and in vitro) a new nicotinamide derivative as an inhibitor of VEGFR-2, a major mediator of angiogenesis Methods: The following in silico studies were performed; DFT calculations, molecular modelling, MD simulations, MM-GBSA, PLIP, and PCAT studies. The compound's in silico (ADMET) analysis was also conducted. Subsequently, the compound ((E)-N-(4-(1-(2-(4-(4-Chlorobenzamido)benzoyl)hydrazono)ethyl) phenyl)nicotinamide) was successfully synthesized and designated as compound X. In vitro, VEGFR-2 inhibition and cytotoxicity of compound X against HCT-116 and A549 cancer cell lines and normal Vero cell lines were conducted. Apoptosis induction and migration assay of HCT-116 cell lines after treatment with compound X were also evaluated. RESULTS: DFT calculations assigned stability and reactivity of compound X. Molecular docking and MD simulations indicated its excellent binding against VEGFR-2. Furthermore, MM-GBSA analysis, PLIP experiments, and PCAT studies confirmed compound X's correct binding with optimal dynamics and energy. ADMET analysis expressed its general likeness and safety. The in vitro assays demonstrated that compound X effectively inhibited VEGFR-2, with an IC50 value of 0.319 ± 0.013 µM and displayed cytotoxicity against HCT-116 and A549 cancer cell lines, with IC50 values of 57.93 and 78.82 µM, respectively. Importantly, compound X exhibited minimal toxicity towards the non-cancerous Vero cell lines, (IC50 = 164.12 µM). Additionally, compound X significantly induced apoptosis of HCT-116 cell lines and inhibited their potential to migrate and heal. CONCLUSION: In summary, the presented study has identified compound X as a promising candidate for the development of a novel apoptotic lead anticancer drug.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Simulação de Acoplamento Molecular , Células A549 , Células HCT116 , Niacinamida/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células , Inibidores de Proteínas Quinases , Ensaios de Seleção de Medicamentos Antitumorais
10.
Pathol Res Pract ; 251: 154894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857034

RESUMO

BACKGROUND: The overexpression of VEGFR-2 receptors in breast cancer provides a valuable approach to anticancer strategies. Targeting VEGFR-2, a new semisynthetic compound (T-1-MCPAB) has been designed. METHODS: Computational methods (ADMET, toxicity, DFT, Molecular Docking, Molecular Dynamics Simulations, MM-GBSA, PLIP, and PCAT) were conducted. In addition to the semi-synthesis, in vitro studies (anti-VEGFR-2, anti-proliferative, flow cytometry, and wound scratch assay) were employed. RESULTS: ADME and toxicity profiles of T-1-MCPAB studies indicated its overall drug-likeness showing results much better than Sorafenib. Then, T-1-MCPAB's exact 3D structure, stability, and reactivity were evoked by the DFT calculations. Molecular docking, molecular dynamics simulations, MM-GPSA, PLIP, and PCAT studies denoted the correct binding and inhibiting potential of T-1-MCPAB, towards VEGFR-2 protein. After the semisynthesis, T-1-MCPAB inhibited VEGFR-2 with an IC50 of 0.135 µM, which was comparable to sorafenib's IC50 of 0.0591 µM. T-1-MCPAB also showed a notable performance against MCF7 and T47D breast cancer cell lines with IC50 values of 30.95 µM and 63.64 µM, respectively, and had high selectivity index values of 3.7 and 1.8, respectively. Furthermore, T-1-MCPAB influenced early and late apoptosis and significantly decreased the potential of MCF7 cells to heal and migrate. CONCLUSION: T-1-MCPAB is a promising VEGFR-2 inhibitor with potential for breast cancer treatment. Further chemical and biological studies are needed to explore its potential as a therapeutic agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Sorafenibe/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores de Proteínas Quinases
11.
Antivir Ther ; 28(5): 13596535231199838, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37669909

RESUMO

BACKGROUND: The COVID-19 pandemic has led to significant loss of life and economic disruption worldwide. Currently, there are limited effective treatments available for this disease. SARS-CoV-2 RNA-dependent RNA polymerase (SARS-CoV-2 RdRp) has been identified as a potential target for drug development against COVID-19. Natural products have been shown to possess antiviral properties, making them a promising source for developing drugs against SARS-CoV-2. OBJECTIVES: The objective of this study is to identify the most effective natural inhibitors of SARS-CoV-2 RdRp among a set of 4924 African natural products using a multi-phase in silico approach. METHODS: The study utilized remdesivir (RTP), the co-crystallized ligand of RdRp, as a starting point to select compounds that have the most similar chemical structures among the examined set of compounds. Molecular fingerprints and structure similarity studies were carried out in the first part of the study. The second part of the study included molecular docking against SARS-CoV-2 RdRp (PDB ID: 7BV2) and Molecular Dynamics (MD) simulations including the calculation of RMSD, RMSF, Rg, SASA, hydrogen bonding, and PLIP. Moreover, the calculations of Molecular mechanics with generalised Born and surface area solvation (MM-GBSA) Lennard-Jones and Columbic electrostatic interaction energies have been conducted. Additionally, in silico ADMET and toxicity studies were performed to examine the drug likeness degrees of the selected compounds. RESULTS: Eight compounds were identified as the most effective natural inhibitors of SARS-CoV-2 RdRp. These compounds are kaempferol 3-galactoside, kaempferol 3-O-ß-D-glucopyranoside, mangiferin methyl ether, luteolin 7-O-ß-D-glucopyranoside, quercetin-O-ß-D-3-glucopyranoside, 1-methoxy-3-indolylmethyl glucosinolate, naringenin, and asphodelin A 4'-O-ß-D-glucopyranoside. CONCLUSION: The results of this study provide valuable information for the development of natural product-based drugs against COVID-19. However, the elected compounds should be further studied in vitro and in vivo to confirm their efficacy in treating COVID-19.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Simulação de Acoplamento Molecular , Pandemias , RNA Viral , SARS-CoV-2 , Descoberta de Drogas , Computadores
12.
Arch Biochem Biophys ; 747: 109761, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734644

RESUMO

Currently, drug resistance to commercially available antibiotics is imparting negative consequences to global health, and the development of novel antibiotics in a timely manner is a prime need of the hour. In the current study, an e-pharmacophore model was built using the 3D structure of DNA gyrase in complex with a standard inhibitor. The generated model was subjected to a pharmacophore based virtual screening against 45,257,086 molecules having 223,460,579 conformers available in MCULE database. Pharmacophore based screening retrieved eight molecules as top hit based on pharmacophoric features in comparison to standard inhibitors. Afterward, all eight compounds were subjected molecular docking based on deep learning algorithm. The molecular docking revealed that compound MCULE-6042843173 and MCULE-2362244223 had significant binding orientation inside active pocket of targeted protein with binding affinity of -9.52 and -9.24 kcal/mol respectively. In addition, density functional theory studies (DFT) were performed to evaluate quantum mechanics of top ranked compounds which were investigated through quantum mechanics (QM) computations which strongly assisted the findings of other in-silico investigations. Consequently, the MCULE-6042843173 and MCULE-2362244223 were subjected to MD simulation studies for evaluation of stability, hydrogen bond analysis, van der Waals interactions, and the contact profile of compounds with targeted amino acid residues. Findings of current study suggested MCULE-6042843173 and MCULE-2362244223 as potential and novel inhibitor of DNA Gyrase enzyme.

13.
RSC Adv ; 13(40): 27801-27827, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37731835

RESUMO

In this study, novel VEGFR-2-targeting thiazolidine-2,4-dione derivatives with potential anticancer properties were designed and synthesized. The ability of the designed derivatives to inhibit VEGFR-2 and stop the growth of three different cancer cell types (HT-29, A-549, and HCT-116) was examined in vitro. The IC50 value of compound 15, 0.081 µM, demonstrated the best anti-VEGFR-2 potency. Additionally, compound 15 showed remarkable anti-proliferative activities against the tested cancer cell lines, with IC50 values ranging from 13.56 to 17.8 µM. Additional flow cytometric investigations showed that compound 15 increased apoptosis in HT-29 cancer cells (from 3.1% to 31.4%) arresting their growth in the S phase. Furthermore, compound 15's apoptosis induction in the same cell line was confirmed by increasing the levels of BAX (4.8-fold) and decreasing Bcl-2 (2.8-fold). Also, compound 15 noticeably increased caspase-8 and caspase-9 levels by 1.7 and 3.2-fold, respectively. Computational methods were used to perform molecular analysis of the VEGFR-2-15 complex. Molecular dynamics simulations and molecular docking were utilized to analyze the complex's kinetic and structural characteristics. Protein-ligand interaction profiler analysis (PLIP) determined the 3D interactions and binding conformation of the VEGFR-2-15 complex. DFT analyses also provided insights into the 3D geometry, reactivity, and electronic characteristics of compound 15. Computational ADMET and toxicity experiments were conducted to determine the potential of the synthesized compounds for therapeutic development. The study's findings suggest that compound 15 might be an effective anticancer lead compound and could guide future attempts to develop new drugs.

14.
RSC Adv ; 13(33): 23365-23385, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545598

RESUMO

In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 µM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 µM and 24.47 µM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.

15.
Future Med Chem ; 15(14): 1233-1250, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37466069

RESUMO

Background: VEGFR-2 is one of the most effective targets in cancer treatment. Aim: The design and semi-synthesis of new theobromine derivatives as potential VEGFR-2 inhibitors. Methods: In vitro and in silico evaluation of the synthesized compounds. Results: Compound 5b demonstrated excellent antiproliferative and VEGFR-2 inhibitory effects with significant apoptotic activity. It modulated the immune response by increasing IL-2 and reducing TNF-α levels. Docking and molecular dynamics simulations revealed the compound's binding affinity with VEGFR-2. Lastly, computational absorption, distribution, metabolism, excretion and toxicity studies indicated the high potential of compound 5b for drug development. Conclusion: Compound 5b could be a promising anticancer agent targeting VEGFR-2.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Teobromina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Antineoplásicos/química , Simulação de Acoplamento Molecular , Desenho de Fármacos
16.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513929

RESUMO

This study describes the synthesis and biological activity of new imadazopyrazines as first-in-class CDK9 inhibitors. The inhibition of CDK9 is a well-established therapeutic target in cancer therapy. The new compounds were assessed using an in vitro kinase assay against CDK9. In this assay, compound 1d exhibited the highest CDK9 inhibition with an IC50 of 0.18 µM. The cytotoxicity effect of the novel compounds was evaluated in three cancer cell lines: HCT116, K652, and MCF7. The results of this assay showed a correlation between the antiproliferative effect of the inhibitors and their CDK9 inhibitory effect in the biochemical assay. This suggests CDK9 inhibition as a mechanistic pathway for their anticancer effect. Several compounds demonstrated potent cytotoxic effects with single-digit micromolar IC50 values yielded through an MTT assay. The compounds with the most promising data were further assessed for their antiviral activity against human Coronavirus 229E. The results showed that compound 4a showed the highest antiviral potency with an IC50 of 63.28 µM and a selectivity index of 4.8. In silico target prediction data showed that 4a displayed a good affinity to proteases. The result of the docking studies of 4a with COVID-19 main protease revealed a high binding affinity, which confirmed the results obtained from in vitro study. The physiochemical and in silico pharmacokinetic parameters indicated reasonable drug-likeness properties of the new compounds, including solubility, lipophilicity, absorption, oral bioavailability, and metabolic stability. Further lead optimization of this novel scaffold could lead to a revolution of a new class of preclinical CDK9 agents.

17.
Drug Dev Res ; 84(6): 1247-1265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232504

RESUMO

Following the pharmacophoric features of vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, a novel thieno[2,3-d]pyrimidine derivative has been designed and its activity against VEGFR-2 has been demonstrated by molecular docking studies that showed an accurate binding mode and an excellent binding energy. Furthermore, the recorded binding was confirmed by a series of molecular dynamics simulation studies, which also revealed precise energetic, conformational, and dynamic changes. Additionally, molecular mechanics with generalized Born and surface area solvation and polymer-induced liquid precursors studies were conducted and verified the results of the MD simulations. Next, in silico absorption, distribution, metabolism, excretion, and toxicity studies have also been conducted to examine the general drug-like nature of the designed candidate. According to the previous results, the thieno[2,3-d]pyrimidine derivative was synthesized. Fascinatingly, it inhibited VEGFR-2 (IC50 = 68.13 nM) and demonstrated strong inhibitory activity toward human liver (HepG2), and prostate (PC3) cell lines with IC50 values of 6.60 and 11.25 µM, respectively. As well, it was safe and showed a high selectivity index against normal cell lines (WI-38). Finally, the thieno[2,3-d]pyrimidine derivative arrested the growth of the HepG2 cells at the G2/M phase inducing both early and late apoptosis. These results were further confirmed through the ability of the thieno[2,3-d]pyrimidine derivative to induce significant changes in the apoptotic genes levels of caspase-3, caspase-9, Bcl-2 associated X-protein, and B-cell lymphoma 2.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Descoberta de Drogas , Pirimidinas/farmacologia , Pirimidinas/química
18.
Life (Basel) ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676140

RESUMO

A new lead compound has been designed as an antiangiogenic EGFR inhibitor that has the pharmacophoric characteristics to bind with the catalytic pocket of EGFR protein. The designed lead compound is a (para-chloro)acetamide derivative of the alkaloid, theobromine, (T-1-PCPA). At first, we started with deep density functional theory (DFT) calculations for T-1-PCPA to confirm and optimize its 3D structure. Additionally, the DFT studies identified the electrostatic potential, global reactive indices and total density of states expecting a high level of reactivity for T-1-PCPA. Secondly, the affinity of T-1-PCPA to bind and inhibit the EGFR protein was studied and confirmed through detailed structure-based computational studies including the molecular docking against EGFRWT and EGFRT790M, Molecular dynamics (MD) over 100 ns, MM-GPSA and PLIP experiments. Before the preparation, the computational ADME and toxicity profiles of T-1-PCPA have been investigated and its safety and the general drug-likeness predicted. Accordingly, T-1-PCPA was semi-synthesized to scrutinize the proposed design and the obtained in silico results. Interestingly, T-1-PCPA inhibited in vitro EGFRWT with an IC50 value of 25.35 nM, comparing that of erlotinib (5.90 nM). Additionally, T-1-PCPA inhibited the growth of A549 and HCT-116 malignant cell lines with IC50 values of 31.74 and 20.40 µM, respectively, comparing erlotinib that expressed IC50 values of 6.73 and 16.35 µM, respectively.

19.
J Biomol Struct Dyn ; 41(21): 11535-11550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617888

RESUMO

A new set of quinoline and isatine derivatives were synthesized as antiangiogenic VEGFR-2 inhibitors. On a biological level, the in vitro ability of the obtained candidates to inhibit VEGFR-2 was found to be strong with IC50 values in the range of 76.64-175.50 nM. To investigate the cytotoxicity and safety, all compounds were tested against a panel of four cancer cell lines (A549, Caco2, HepG2 and MDA) as well as two normal cell lines (Vero and WI-38). Interestingly, compound 12 exhibited noticeable cytotoxicity against A549, Caco2 and MDA with IC50 values of 5.40, 0.58 and 0.94 µM, respectively. These results were better and comparable to that of doxorubicin (0.70, 0.82 and 0.90 µM, respectively) with more than three folds higher selectivity index against the Caco2 cell lines. Compound 9 prevented the healing of the cancer cells at a low concentration. Also, the compound's potential to induce programmed cell death in Caco-2 was proved through the significant down regulating of the expression of Bcl2, Bcl-xl and Survivin in addition to the slight upregulation of the TGF-ß gene. The cell cycle analysis indicated that compound 9 arrested the Caco-2 cells in the G2/M phase. Interestingly, the molecular docking studies against VEGFR-2 revealed the correct binding of the targeted compounds similar to sorafenib. Furthermore, MD experiments validated the binding of compound 12 with VEGFR-2 over 100 ns, as well as MM-PBSA analysis that confirmed the precise binding with optimum energy. Finally, ADMET analysis showed the general drug-likeness and confirmed the safety of the tested compounds.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Quinolinas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células , Simulação por Computador , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Quinolinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
20.
Int J Clin Pharmacol Ther ; 61(3): 111-121, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36458442

RESUMO

PURPOSE: To evaluate the rate and determinants of non-adherence to antipsychotic medications in Saudi Arabia. MATERIALS AND METHODS: This was a cross-sectional study that included a questionnaire, interview, and data extraction from medical records of adult patients on antipsychotic medications. The study was conducted at outpatient clinics at the psychological care department at King Fahad Medical City, Riyadh, Saudi Arabia, between October 25 and November 26, 2020. Data collection included three parts: patients' sociodemographic characteristics; antipsychotic medications used and patients' clinical characteristics; and adherence to antipsychotic medications measured by the Medication Adherence Rating Scale (MARS). RESULTS: Out of 220 patients, 122 (55.5%) were considered non-adherent (MARS scores 6 or less). The MARS items contributing most to non-adherence were "the medication makes me feel tired and sluggish" and "forget to take the medication", 55 and 40.9%, respectively. Additionally, adverse drug effect significantly increased the risk of poor adherence in regression analysis (odds ratio = 1.97, p = 0.028). The model also showed that female sex, low income, cigarette smoking, substance abuse, uncontrolled disease, comorbidity, and use of Ruqyah religious therapy were associated with increased risk of poor adherence, but were however not statistically significant (p < 0.05). CONCLUSION: This study showed high non-adherence rate to antipsychotic medications. Adverse drug effects and forgetting to take medications were the main patient-reported barriers to adherence. Likewise, sociodemographic, clinical, and spiritual factors affected medication adherence. Knowing these predictors helps in early identification of patients who are predisposed to medication non-adherence and allows personalized interventions that improve adherence and treatment outcomes.


Assuntos
Antipsicóticos , Adulto , Humanos , Feminino , Antipsicóticos/uso terapêutico , Arábia Saudita/epidemiologia , Prevalência , Estudos Transversais , Fatores de Risco , Adesão à Medicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA