Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37639366

RESUMO

Aims: To determine the role of the kynurenine (KYN) pathway in rhodoquinone (RQ) and de novo NAD+ biosynthesis and whether NAD+ rescue pathways are essential in parasitic worms (helminths). Results: We demonstrate that RQ, the key electron transporter used by helminths under hypoxia, derives from the tryptophan (Trp) catabolism even in the presence of a minimal KYN pathway. We show that of the KYN pathway genes only the kynureninase and tryptophan/indoleamine dioxygenases are essential for RQ biosynthesis. Metabolic labeling with Trp revealed that the lack of the formamidase and kynurenine monooxygenase genes did not preclude RQ biosynthesis in the flatworm Mesocestoides corti. In contrast, a minimal KYN pathway prevented de novo NAD+ biosynthesis, as revealed by metabolic labeling in M. corti, which also lacks the 3-hydroxyanthranilate 3,4-dioxygenase gene. Our results indicate that most helminths depend solely on NAD+ rescue pathways, and some lineages rely exclusively on the nicotinamide salvage pathway. Importantly, the inhibition of the NAD+ recycling enzyme nicotinamide phosphoribosyltransferase with FK866 led cultured M. corti to death. Innovation: We use comparative genomics of more than 100 hundred helminth genomes, metabolic labeling, HPLC-mass spectrometry targeted metabolomics, and enzyme inhibitors to define pathways that lead to RQ and NAD+ biosynthesis in helminths. We identified the essential enzymes of these pathways in helminth lineages, revealing new potential pharmacological targets for helminthiasis. Conclusion: Our results demonstrate that a minimal KYN pathway was evolutionary maintained for RQ and not for de novo NAD+ biosynthesis in helminths and shed light on the essentiality of NAD+ rescue pathways in helminths.

2.
Front Mol Biosci ; 10: 906606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968274

RESUMO

Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+ and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA