Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Clin Exp Dent Res ; 10(4): e903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031165

RESUMO

OBJECTIVES: To explore the antimicrobial potential of strontium (Sr)-functionalized wafers against multiple bacteria associated with per-implant infections, in both mono- and multispecies biofilms. MATERIALS AND METHODS: The bactericidal and bacteriostatic effect of silicon wafers functionalized with a strontium titanium oxygen coating (Sr-Ti-O) or covered only with Ti (controls) against several bacteria, either grown as a mono-species or multispecies biofilms, was assessed using a bacterial viability assay and a plate counting method. Mono-species biofilms were assessed after 2 and 24 h, while the antimicrobial effect on multispecies biofilms was assessed at Days 1, 3, and 6. The impact of Sr functionalization on the total percentage of Porphyromonas gingivalis in the multispecies biofilm, using qPCR, and gingipain activity was also assessed. RESULTS: Sr-functionalized wafers, compared to controls, were associated with statistically significant less viable cells in both mono- and multispecies tests. The number of colony forming units (CFUs) within the biofilm was significantly less in Sr-functionalized wafers, compared to control wafers, for Staphylococcus aureus at all time points of evaluation and for Escherichia coli at Day 1. Gingipain activity was less in Sr-functionalized wafers, compared to control wafers, and the qPCR showed that P. gingivalis remained below detection levels at Sr-functionalized wafers, while it consisted of 15% of the total biofilm on control wafers at Day 6. CONCLUSION: Sr functionalization displayed promising antimicrobial potential, possessing bactericidal and bacteriostatic ability against bacteria associated with peri-implantitis grown either as mono-species or mixed in a multispecies consortium with several common oral microorganisms.


Assuntos
Biofilmes , Peri-Implantite , Porphyromonas gingivalis , Estrôncio , Titânio , Titânio/química , Titânio/farmacologia , Biofilmes/efeitos dos fármacos , Peri-Implantite/microbiologia , Peri-Implantite/tratamento farmacológico , Estrôncio/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Viabilidade Microbiana/efeitos dos fármacos , Implantes Dentários/microbiologia
2.
Clin Cosmet Investig Dent ; 16: 127-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765692

RESUMO

Background: Applying multifunctional coatings employing strontium (Sr) ions on titanium (Ti) surfaces is a useful and biocompatible method to improve osseointegration and prevent tissue infections through antimicrobial activity. Nonetheless, the effectiveness of Sr coating on the adhesion and viability of human gingival fibroblasts (HGFs) to Ti surfaces remains unclear. Purpose: The study aimed to evaluate the effect of Sr coating on the adhesion and viability of HGFs to Ti surfaces. Materials and Methods: The Ti wafers were divided into two groups based on Sr coating: uncoated Ti (control) and Sr-coated Ti. The Magnetron sputtering technique was used for Sr coating on Ti surfaces. The HGFs were seeded onto the surfaces and cultured for 48 and 96 hours before the cell adhesion and viability of the attached HGFs were assessed. The adhesion of HGFs was analyzed using the attached cell numbers at 48 h and 96 h, and the morphology at 24 h and 72 h. The cytotoxic effect on HGFs was assessed after 24 and 72 hours of incubation using cell viability assay. Student's t-test was used for statistical analysis. Results: The number of cells attached to Sr-coated surfaces was significantly greater than those attached to uncoated Ti surfaces after 48 hours (P<0.0001) and 96 hours (P=0.0002). Sr-coated and uncoated Ti surfaces were not cytotoxic to HGFs, with the cell viability ranging from 92% to 105% of the untreated control HGFs. There were no significant differences in cell viability between Sr-coated and uncoated Ti surfaces at 24 hours (P=0.3675) and 72 hours (P=0.0982). Conclusion: Sr-coated Ti surfaces induce adhesion of HGFs compared to uncoated Ti surfaces. Further, Sr-coated and uncoated Ti surfaces show no cytotoxic effect on the attached HGFs.

3.
Antibiotics (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546189

RESUMO

Background: Peri-implantitis due to infection of dental implants is a common complication that may cause significant patient morbidity. In this study, we investigated the antimicrobial potential of Sr(OH)2 against different bacteria associated with peri-implantitis. Methods: The antimicrobial potential of five concentrations of Sr(OH)2 (100, 10, 1, 0.1, and 0.01 mM) was assessed with agar diffusion test, minimal inhibitory concentration (MIC), and biofilm viability assays against six bacteria commonly associated with biomaterial infections: Streptococcus mitis, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Escherichia coli, and Fusobacterium nucleatum. Results: Zones of inhibition were only observed for, 0.01, 0.1, and 1 mM of Sr(OH)2 tested against P. gingivalis, in the agar diffusion test. Growth inhibition in planktonic cultures was achieved at 10 mM for all species tested (p < 0.001). In biofilm viability assay, 10 and 100 mM Sr(OH)2 showed potent bactericidal affect against S. mitis, S. epidermidis, A. actinomycetemcomitans, E. coli, and P. gingivalis. Conclusions: The findings of this study indicate that Sr(OH)2 has antimicrobial properties against bacteria associated with peri-implantitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA