Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dose Response ; 22(2): 15593258241247980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645382

RESUMO

Isoproterenol (ISO), a chemically synthesized catecholamine, belongs to ß-adrenoceptor agonist used to treat bradycardia. The ß-adrenergic agonist is an essential regulator of myocardial metabolism and contractility; however, excessive exposure to ISO can initiate oxidative stress and inflammation. This study aims to investigate the molecular mechanisms underlying ISO-induced cardiac remodeling, the protective efficacy of resveratrol (RSVR), and its liposomal formulation (L-RSVR) against such cardiac change. Wistar albino rats were evenly divided into 4 groups. Control group, ISO group received ISO (50 mg/kg, s.c.) twice a week for 2 weeks, and RSVR- and L-RSVR-treated groups in which rats received either RSVR or L-RSVR (20 mg/kg/day, p.o.) along with ISO for 2 weeks. ISO caused a significant elevation of the expression levels of BAX and MEF2 mRNA, S100A1 and cytochrome C proteins, as well as DNA fragmentation in cardiac tissue compared to the control group. Treatment with either RSVR or L-RSVR for 14 days significantly ameliorated the damage induced by ISO, as evidenced by the improvement of all measured parameters. The present study shows that L-RSVR provides better cardio-protection against ISO-induced cardiac injury in rats, most likely through modulation of cardiac S100A1 protein expression and inhibition of inflammation and apoptosis.

2.
Inflammation ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413451

RESUMO

Diclofenac sodium (DIC) is a widely used non-steroidal anti-inflammatory drug. Unfortunately, its prolonged use is associated with nephrotoxicity due to oxidative stress, inflammation, and fibrosis. We aimed to investigate the nephroprotective effects of vitamin B complex (B1, B6, B12) against DIC-induced nephrotoxicity and its impact on NOX4/RhoA/ROCK, a pathway that plays a vital role in renal pathophysiology. Thirty-two Wistar rats were divided into four groups: (1) normal control; (2) vitamin B complex (16 mg/kg B1, 16 mg/kg B6, 0.16 mg/kg B12, intraperitoneal); (3) DIC (10 mg/kg, intramuscular); and (4) DIC plus vitamin B complex group. After 14 days, the following were assayed: serum renal biomarkers (creatinine, blood urea nitrogen, kidney injury molecule-1), oxidative stress, inflammatory (tumor necrosis factor-α, interleukin-6), and fibrotic (transforming growth factor-ß) markers as well as the protein levels of NOX4, RhoA, and ROCK. Structural changes, inflammatory cell infiltration, and fibrosis were detected using hematoxylin and eosin and Masson trichrome stains. Compared to DIC, vitamin B complex significantly decreased the renal function biomarkers, markers of oxidative stress and inflammation, and fibrotic cytokines. Glomerular and tubular damage, inflammatory infiltration, and excessive collagen accumulation were also reduced. Protein levels of NOX4, RhoA, and ROCK were significantly elevated by DIC, and this elevation was ameliorated by vitamin B complex. In conclusion, vitamin B complex administration could be a renoprotective approach during treatment with DIC via, at least in part, suppressing the NOX4/RhoA/ROCK pathway.

3.
Toxicol Res ; 39(4): 721-737, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37779590

RESUMO

Tamoxifen (TAM) is a commonly used drug for breast cancer treatment. Although effective, TAM has deleterious effects on many organs. The toxic effects of TAM on the pancreas and the underlying mechanisms however, have not fully investigated. In the present study, we investigated the effects of TAM on the pancreatic tissue in female rats. We also examined whether cardamom aqueous extract (CAE) protects against TAM-induced pancreatic injury. TAM-intoxicated rats were injected with 45 mg/kg of TAM for 10 days, whereas rats in the CAE-treated group were administered 10 mL/kg of CAE for 20 days, starting 10 days prior to TAM administration. Treatment with TAM resulted in severe degeneration of the pancreatic acini and marked increases in the serum levels of pancreatic lipase, α-amylase, glucose, fatty acids and triglycerides along with decreased insulin serum levels. TAM led to oxidative stress as evident from a significant increase in the pancreatic levels of lipid peroxides and nitric oxide along with the depletion of reduced glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, inflammation was indicated by a significant increase in tumor necrosis factor-α and interleukin-6 levels, enhanced expression of the macrophage recruitment marker; CD68 as well as up-regulated protein levels of toll-like receptor 4 and nuclear factor kappa B and increased p-p38/MAPK ratio; which are important signals in the production of inflammatory cytokines. TAM also markedly increased the pancreatic levels of caspase-3 and BAX reflecting its apoptotic effects. The CAE treatment ameliorated all the biochemical and histological changes induced by TAM. The present study revealed, for the first time, that TAM has toxic effects on the pancreatic tissue through oxidative stress, inflammation and apoptotic effects. The present study also provides evidence that CAE exerts cytoprotective effects against these deleterious effects induced by TAM in the pancreatic tissue. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00198-w.

5.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432051

RESUMO

Parkinson's disease (PD) is characterised by dopaminergic neuronal loss in the brain area. PD is a complex disease that deteriorates patients' motor and non-motor functions. In experimental animals, the neurotoxin 6-OHDA induces neuropathological, behavioural, neurochemical and mitochondrial abnormalities and the formation of free radicals, which is related to Parkinson-like symptoms after inter-striatal 6-OHDA injection. Pathological manifestations of PD disrupt the cAMP/ATP-mediated activity of the transcription factor CREB, resulting in Parkinson's-like symptoms. Forskolin (FSK) is a direct AC/cAMP/CREB activator isolated from Coleus forskohlii with various neuroprotective properties. FSK has already been proven in our laboratory to directly activate the enzyme adenylcyclase (AC) and reverse the neurodegeneration associated with the progression of Autism, Multiple Sclerosis, ALS, and Huntington's disease. Several behavioural paradigms were used to confirm the post-lesion effects, including the rotarod, open field, grip strength, narrow beam walk (NBW) and Morris water maze (MWM) tasks. Our results were supported by examining brain cellular, molecular, mitochondrial and histopathological alterations. The FSK treatment (15, 30 and 45 mg/kg, orally) was found to be effective in restoring behavioural and neurochemical defects in a 6-OHDA-induced experimental rat model of PD. As a result, the current study successfully contributes to the investigation of FSK's neuroprotective role in PD prevention via the activation of the AC/cAMP/PKA-driven CREB pathway and the restoration of mitochondrial ETC-complex enzymes.


Assuntos
Adenilil Ciclases , Doença de Parkinson , Animais , Ratos , Oxidopamina/efeitos adversos , Colforsina/farmacologia , Adenilil Ciclases/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo
6.
Biomed Pharmacother ; 155: 113799, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271575

RESUMO

Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1ß, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, ß-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3ß as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Glutamato de Sódio , Animais , Masculino , Ratos , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/prevenção & controle , Proteína X Associada a bcl-2 , beta Catenina/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Cálcio , Caspase 1/metabolismo , Dopamina , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Norepinefrina , RNA Mensageiro , Solução Salina , Timol/farmacologia , Timol/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt
7.
Mol Cell Probes ; 65: 101851, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007750

RESUMO

Environmental factors, genetic factors, and epigenetics are involved in animal growth and development. Among them, methylation is one of the abundant modifications of epigenetics. N6-methyladenosine(m6A) is extensive in cellular RNA, of which mRNA is the most common internal modification. m6A modification regulates life activities dynamically and reversibly, including expressed genes, RNA metabolism, and protein translation. The m6A modifications are closely related to human diseases involving heart failure, tumors, and cancer. It is relatively in-depth in the medical field. However, there are few studies on its biochemical function in animals. We summarized the latest paper related to the chemical structure and role of the writers, the erasers, and the readers to study exerting dynamic regulation of m6A modification of animal growth and development. Furthermore, the key roles of m6A modification were reported in the process of RNA metabolism. Finally, the dynamic regulation of m6A modification in animal growth and development was reviewed, including brain development, fertility, fat deposition, and muscle production. It reveals the key roles of m6A modification and the regulation of gene expression, aiming to provide new ideas for m6A methylation in animal growth and development.


Assuntos
Adenosina , Neoplasias , Adenosina/genética , Adenosina/metabolismo , Animais , Crescimento e Desenvolvimento/genética , Humanos , Metilação , Neoplasias/genética , RNA/metabolismo , RNA Mensageiro/genética
8.
Mol Cell Probes ; 65: 101850, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988893

RESUMO

Intramuscular fat (IMF) content is a crucial determinant of meat quality traits in livestock. A network of transcription factors act in concert to regulate adipocyte formation and differentiation, which in turn influences intramuscular fat. Several genes and associated transcription factors have been reported to influence lipogenesis and adipogenesis during fetal and subsequent growth stage. Specifically in cattle, Krüppel-like factors (KLFs), which represents a family of transcription factors, have been reported to be involved in adipogenic differentiation and development. KLFs are a relatively large group of zinc-finger transcription factors that have a variety of functions in addition to adipogenesis. In mammals, the participation of KLFs in cell development and differentiation is well known. Specifically in the context of adipogenesis, KLFs function either as positive (KLF4, KLF5, KLF6, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14 and KLF15) or negative organizers (KLF2, KLF3 and KLF7), by a variety of different mechanisms such as crosstalk with C/EBP and PPARγ. In this review, we aim to summarize the potential functions of KLFs in regulating adipogenesis and associated pathways in cattle. Furthermore, the function of known bovine adipogenic marker genes, and associated transcription factors that regulate the expression of these marker genes is also summarized. Overall, this review will provide an overview of marker genes known to influence bovine adipogenesis and regulation of expression of these genes, to provide insights into leveraging these genes and transcription factors to enhance breeding programs, especially in the context of IMF deposition and meat quality.


Assuntos
Adipogenia , Fatores de Transcrição Kruppel-Like , Adipócitos/metabolismo , Adipogenia/genética , Animais , Bovinos/genética , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mamíferos/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo
9.
Biosci Rep ; 42(6)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35670784

RESUMO

OBJECTIVE: Colon cancer (CC) remains one of the leading causes of cancer death worldwide. Several mutations/polymorphisms have been implicated in CC development and/or progression. The role of the recently identified variants related to the long non-coding RNAs (lncRNAs) family has not yet been fully uncovered. In this sense, we aimed to explore the association between the lncRNA PUNISHER rs12318065 variant and the CC risk and/or prognosis. METHODS: A total of 408 CC (paired 204 cancer/non-cancer) tissues were genotyped using the TaqMan allelic discrimination assay. RESULTS: "A" variant was associated with higher susceptibility to develop CC under heterozygote (A/C vs. C/C: OR = 1.39, 95%CI = 1.09-2.17, P=0.002), homozygote (A/A vs. C/C: OR = 2.63, 95%CI = 1.51-4.58, P=0.001), dominant (A/C-A/A vs. C/C: OR = 1.72, 95%CI = 1.15-02.57, P=0.008), and recessive (A/A vs. C/C-A/C: OR = 2.23, 95%CI = 1.34-3.72, P=0.001) models. Patients with metastasis were more likely to harbor A/A and A/C genotypes (16.7% and 14.1%) than 11% with the C/C genotype (P=0.027). Patients harboring C>A somatic mutation were more likely to develop relapse (52.6% vs. 26.5%, P=0.003), have poor survival (57.9% vs. 27.7%, P=0.001), and have shorter disease-free survival (43.2 ± 2.6 months vs. 56.8 ± 1.29 months, P<0.001) and overall survival (49.6 ± 2.4 months vs. 56.6 ± 0.99 months, P<0.001). Multivariate Cox regression analysis showed that patients with distal metastasis and C>A somatic mutation were three times more likely to die. CONCLUSIONS: To our knowledge, the present study is the first to identify that the PUNISHER rs12318065 variant could be a novel putative driver of colon cancer and is associated with poor prognosis.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Neoplasias do Colo/genética , Predisposição Genética para Doença , Humanos , Mutação , Recidiva Local de Neoplasia , Polimorfismo de Nucleotídeo Único , Prognóstico , RNA Longo não Codificante/genética
10.
Eur J Pharmacol ; 923: 174910, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339478

RESUMO

Liver fibrosis is a common chronic hepatic disease. This study was done to examine the effect of pyridoxamine against thioacetamide-induced hepatic fibrosis. Animals were divided into four groups (1) control group; (2) Thioacetamide group (200 mg/kg, i.p.) twice a week for eight weeks; (3) Pyridoxamine-treated group treated with pyridoxamine (100 mg/kg/day, i.p.) for eight weeks; (4) Thioacetamide and pyridoxamine group, in which pyridoxamine was given (100 mg/kg/day, i.p.) during thioacetamide injections. Thioacetamide treatment resulted in hepatic dysfunction manifested by increased serum levels of bilirubin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Oxidative stress was noted by increased hepatic lipid peroxidation and decreased glutathione (GSH). Increased concentrations of total nitrite/nitrate, advanced glycation end products (AGEs), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), matrix metalloproteinases (MMP-2&9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were noticed in hepatic tissues. Immunostaining sections also revealed overexpression of MMP-2, MMP-9 and collagen IV. Liver fibrosis was confirmed by severe histopathological changes. Pyridoxamine improved the assessed parameters. Moreover, histopathological and immunohistological studies supported the ability of pyridoxamine to reduce liver fibrosis. The findings of the present study provide evidence that pyridoxamine is a novel target for the treatment of liver fibrosis.


Assuntos
Metaloproteinase 2 da Matriz , Tioacetamida , Animais , Produtos Finais de Glicação Avançada/farmacologia , Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo , Piridoxamina/metabolismo , Piridoxamina/farmacologia , Piridoxamina/uso terapêutico , Tioacetamida/farmacologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo
11.
Drug Chem Toxicol ; 45(3): 1364-1372, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33059470

RESUMO

The purpose of this research was to evaluate the efficacy of carsil (CAR) either alone or in combination with α-tocopherol (α-TOCO) and/or turmeric (TUMR) against tetrachloromethane (TCM)-induced cardiomyocyte injury in rats. Administration of CAR either alone or in combination with α-TOCO and/or TUMR post-TCM injection, significantly mitigated the increases in serum troponin T, creatine kinase-MB (CK-MB) as well as interleukin-6 (IL-6), interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP). They also decline the elevation of caspase-3, vascular endothelial growth factor (VEGF) protein expression as well as DNA damage in cardiac tissues induced by TCM. The biochemical results were confirmed by histopathological investigation. Conclusion: The combination of the three antioxidants showed greater cardioprotective potential, compared to individual drugs. Therefore, this combination may be recommended as a complementary therapy to antagonize cardiac injury induced by different insults.


Assuntos
Antioxidantes , Tetracloreto de Carbono , Animais , Antioxidantes/farmacologia , Coração , Ratos , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34370655

RESUMO

The fast spread of coronavirus 2019 (COVID-19) calls for immediate action to counter the associated significant loss of human life and deep economic impact. Certain patient populations like those with obesity and diabetes are at higher risk for acquiring severe COVID-19 disease and have a higher risk of COVID-19 associated mortality. In the absence of an effective and safe vaccine, the only immediate promising approach is to repurpose an existing approved drug. Several drugs have been proposed and tested as adjunctive therapy for COVID-19. Among these drugs are the glucagon-like peptide-1 (GLP-1) 2 agonists and the dipeptidylpeptidase-4 (DPP-4) inhibitors. Beyond their glucose-lowering effects, these drugs have several pleiotropic protective properties, which include cardioprotective effects, anti-inflammatory and immunomodulatory activities, antifibrotic effects, antithrombotic effects, and vascular endothelial protective properties. This narrative review discusses these protective properties and addresses their scientific plausibility for their potential use as adjunctive therapy for COVID-19 disease.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
13.
Sci Prog ; 104(2): 368504211011839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33940981

RESUMO

The current article was designed to assess the role of chitosan nanoparticles (CNPs) in the management of hepatic injury induced by the hepatocarcinogen 2-nitropropane (2-NP). Rats were divided into three groups. The first group served as a control, the second group was injected with 2-NP, while the third group was treated with CNPs 1 h before 2-NP injection every other day for 4 weeks. The 2-NP injection upregulated serum AST and ALT activities, as well as hepatic TNF- α, IL-6, and MDA levels and the expression of vascular endothelial growth factor (VEGF) and caspase-3, whereas GSH contents and SOD activity were decreased. Immunohistochemistry investigations revealed that the hepatic protein expression of collagen I, inducible nitric oxide synthetase, proliferating cell nuclear antigen, cluster of differentiation, and p53 were upregulated. hematoxylin and eosin (H&E) and Masson's trichrome stains supported the previous parameters, and CNPs ameliorated most of the previous biochemical parameters. CNPs achieved promising results in the limitation of 2-NP hepatotoxicity.


Assuntos
Quitosana , Nanopartículas , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Quitosana/uso terapêutico , Fígado , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Nitroparafinas , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Propano/análogos & derivados , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Life Sci ; 277: 119512, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862116

RESUMO

AIM: Tamoxifen (TAMO) is a chemotherapeutic drug used for the treatment of breast cancer. Nevertheless, there is a lack of information available in regarding its nephrotoxicity. The purpose of this work was to investigate the impact of cyanocobalamin (COB) and/or calcitriol (CAL) injections on TAMO-induced nephrotoxicity. MAIN METHODS: Animals were allocated into five groups as follows: normal control group; TAMO (45 mg/kg) administered group; TAMO+COB (6mg/kg, i.p) treated group; TAMO+CAL (0.3 µg/kg, i.p) treated group; TAMO+COB+CAL combination groups. KEY FINDINGS: Renal injury induced by TAMO was confirmed by the alteration in renal function parameters in the serum (urea and creatinine), as well as in the urine (creatinine clearance, total protein and albumin). These results were supported by histopathological examination. Upregulation of renal inflammatory parameters; tumor necrosis factor (TNF)-α, interleukin (IL)-6, C-reactive protein (CRP); and transforming growth factor (TGF)-ß1 as well as in protein expression of nuclear factor-kappa B (NF-κB) and cleaved caspase-3 were observed to a greater extent in the TAMO-treated rats compared with the control. Renal fibrosis was also evidenced by a elevation in renal L-hydroxyproline level as well as by histomorphological collagen deposition in TAMO-treated groups compared to the control group. Administration of COB and/or CAL concurrently with TAMO significantly ameliorated the deviation in the above-studied parameters and improved the histopathological renal picture. SIGNIFICANCE: Inhibition of NF-κß-mediated inflammation and caspase-3-induced apoptosis are possible renoprotective mechanisms of COB and/or CAL against TAMO nephrotoxicity, which was more noticeable in the TAMO group treated with the combination of the two vitamins in question.


Assuntos
Calcitriol/farmacologia , Tamoxifeno/efeitos adversos , Vitamina B 12/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Apoptose , Nitrogênio da Ureia Sanguínea , Calcitriol/metabolismo , Caspase 3/metabolismo , Creatinina/sangue , Feminino , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Testes de Função Renal , NF-kappa B/metabolismo , Nefrite/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Vitamina B 12/metabolismo
15.
Dose Response ; 18(3): 1559325820949797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922227

RESUMO

Hypoxia may lead to inflammatory responses by numerous signaling pathways. This investigation intended to inspect the defensive role of Quercetin (Quer) and/ or Melatonin (Mel) against reno toxicity induced by Sodium nitrite (Sod ntr). Sod ntr injection significantly decreased blood hemoglobin concentration (Hb) with a concurrent increase in serum tumor necrosis factor- α, interleukin-6, C-reactive protein, creatinine, and urea levels. Over protein-expression of vascular endothelial growth factor and heat shock, protein-70 and mRNA of HIF-1α were also observed. Pretreatment of the Sod ntr- injected rats with the aforementioned antioxidants; either alone or together significantly improved such parameters. Histopathological examination reinforced the previous results. It was concluded that the combined administration of Quer and Mel may be useful as a potential therapy against renal injury induced by Sod ntr. HIF-1α and HSP-70 are implicated in the induction of hypoxia and its treatment.

16.
Stem Cell Res Ther ; 9(1): 319, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463599

RESUMO

BACKGROUND: Better understanding of the signaling pathways that regulate human bone marrow stromal stem cell (hBMSC) differentiation into bone-forming osteoblasts is crucial for their clinical use in regenerative medicine. Chemical biology approaches using small molecules targeting specific signaling pathways are increasingly employed to manipulate stem cell differentiation fate. METHODS: We employed alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin R staining to assess mineralized matrix formation of cultured hBMSCs. Changes in gene expression were assessed using an Agilent microarray platform, and data normalization and bioinformatics were performed using GeneSpring software. For in vivo ectopic bone formation experiments, hMSCs were mixed with hydroxyapatite-tricalcium phosphate granules and implanted subcutaneously into the dorsal surface of 8-week-old female nude mice. Hematoxylin and eosin staining and Sirius Red staining were used to detect bone formation in vivo. RESULTS: We identified several compounds which inhibited osteoblastic differentiation of hMSCs. In particular, we identified ruxolitinib (INCB018424) (3 µM), an inhibitor of JAK-STAT signaling that inhibited osteoblastic differentiation and matrix mineralization of hMSCs in vitro and reduced ectopic bone formation in vivo. Global gene expression profiling of ruxolitinib-treated cells identified 847 upregulated and 822 downregulated mRNA transcripts, compared to vehicle-treated control cells. Bioinformatic analysis revealed differential regulation of multiple genetic pathways, including TGFß and insulin signaling, endochondral ossification, and focal adhesion. CONCLUSIONS: We identified ruxolitinib as an important regulator of osteoblast differentiation of hMSCs. It is plausible that inhibition of osteoblast differentiation by ruxolitinib may represent a novel therapeutic strategy for the treatment of pathological conditions caused by accelerated osteoblast differentiation and mineralization.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Pirazóis/farmacologia , Animais , Feminino , Xenoenxertos , Humanos , Hidroxiapatitas/farmacologia , Janus Quinases/antagonistas & inibidores , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Nitrilas , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Cultura Primária de Células , Pirimidinas
17.
IUBMB Life ; 70(7): 649-657, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659130

RESUMO

Cardiovascular disease is a leading cause of morbidity and mortality. Smooth muscle cells (SMC) comprising the vascular wall can switch phenotypes from contractile to synthetic, which can promote the development of aberrant remodelling and intimal hyperplasia (IH). MicroRNA-21 (miR-21) is a short, non-coding RNA that has been implicated in cardiovascular diseases including proliferative vascular disease and ischaemic heart disease. However, its involvement in the complex development of atherosclerosis has yet to be ascertained. Smooth muscle cells (SMC) were isolated from human saphenous veins (SV). miR-21 was over-expressed and the impact of this on morphology, proliferation, gene and protein expression related to synthetic SMC phenotypes monitored. Over-expression of miR-21 increased the spread cell area and proliferative capacity of SV-SMC and expression of MMP-1, whilst reducing RECK protein, indicating a switch to the synthetic phenotype. Furthermore, platelet-derived growth factor BB (PDGF-BB; a growth factor implicated in vasculoproliferative conditions) was able to induce miR-21 expression via the PI3K and ERK signalling pathways. This study has revealed a mechanism whereby PDGF-BB induces expression of miR-21 in SV-SMC, subsequently driving conversion to a synthetic SMC phenotype, propagating the development of IH. Thus, these signaling pathways may be attractive therapeutic targets to minimise progression of the disease. © 2018 IUBMB Life, 70(7):649-657, 2018.


Assuntos
MicroRNAs/genética , Músculo Liso Vascular/citologia , Veia Safena/citologia , Aterosclerose/genética , Becaplermina/farmacologia , Células Cultivadas , Ponte de Artéria Coronária , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-1alfa/genética , Sistema de Sinalização das MAP Quinases , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Veia Safena/fisiologia
18.
J Mol Cell Cardiol ; 74: 240-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24927876

RESUMO

Type 2 diabetes (T2DM) promotes premature atherosclerosis and inferior prognosis after arterial reconstruction. Vascular smooth muscle cells (SMC) respond to patho/physiological stimuli, switching between quiescent contractile and activated synthetic phenotypes under the control of microRNAs (miRs) that regulate multiple genes critical to SMC plasticity. The importance of miRs to SMC function specifically in T2DM is unknown. This study was performed to evaluate phenotype and function in SMC cultured from non-diabetic and T2DM patients, to explore any aberrancies and investigate underlying mechanisms. Saphenous vein SMC cultured from T2DM patients (T2DM-SMC) exhibited increased spread cell area, disorganised cytoskeleton and impaired proliferation relative to cells from non-diabetic patients (ND-SMC), accompanied by a persistent, selective up-regulation of miR-143 and miR-145. Transfection of premiR-143/145 into ND-SMC induced morphological and functional characteristics similar to native T2DM-SMC; modulating miR-143/145 targets Kruppel-like factor 4, alpha smooth muscle actin and myosin VI. Conversely, transfection of antimiR-143/145 into T2DM-SMC conferred characteristics of the ND phenotype. Exposure of ND-SMC to transforming growth factor beta (TGFß) induced a diabetes-like phenotype; elevated miR-143/145, increased cell area and reduced proliferation. Furthermore, these effects were dependent on miR-143/145. In conclusion, aberrant expression of miR-143/145 induces a distinct saphenous vein SMC phenotype that may contribute to vascular complications in patients with T2DM, and is potentially amenable to therapeutic manipulation.


Assuntos
Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Veia Safena/metabolismo , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Interleucina-1alfa/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Cultura Primária de Células , Veia Safena/efeitos dos fármacos , Veia Safena/patologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...