Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38594515

RESUMO

RATIONALE: Cognitive flexibility, the ability to adapt behaviour in response to a changing environment, is disrupted in several neuropsychiatric disorders, including obsessive-compulsive disorder and major depressive disorder. Evidence suggests that flexibility, which can be operationalised using reversal learning tasks, is modulated by serotonergic transmission. However, how exactly flexible behaviour and associated reinforcement learning (RL) processes are modulated by 5-HT action on specific receptors is unknown. OBJECTIVES: We investigated the effects of 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) antagonism on flexibility and underlying RL mechanisms. METHODS: Thirty-six male Lister hooded rats were trained on a touchscreen visual discrimination and reversal task. We evaluated the effects of systemic treatments with the 5-HT2AR and 5-HT2CR antagonists M100907 and SB-242084, respectively, on reversal learning and performance on probe trials where correct and incorrect stimuli were presented with a third, probabilistically rewarded, stimulus. Computational models were fitted to task choice data to extract RL parameters, including a novel model designed specifically for this task. RESULTS: 5-HT2AR antagonism impaired reversal learning only after an initial perseverative phase, during a period of random choice and then new learning. 5-HT2CR antagonism, on the other hand, impaired learning from positive feedback. RL models further differentiated these effects. 5-HT2AR antagonism decreased punishment learning rate (i.e. negative feedback) at high and low doses. The low dose also decreased reinforcement sensitivity (beta) and increased stimulus and side stickiness (i.e., the tendency to repeat a choice regardless of outcome). 5-HT2CR antagonism also decreased beta, but reduced side stickiness. CONCLUSIONS: These data indicate that 5-HT2A and 5-HT2CRs both modulate different aspects of flexibility, with 5-HT2ARs modulating learning from negative feedback as measured using RL parameters and 5-HT2CRs for learning from positive feedback assessed through conventional measures.

2.
Neuropsychopharmacology ; 49(3): 600-608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914893

RESUMO

Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. Cognitive flexibility is important for successful attainment of goals, as well as for social interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-compulsive disorder. However, a unifying mechanistic framework accounting for the role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate common effects of manipulating serotonin function across two species (rats and humans) on latent processes supporting choice behavior during probabilistic reversal learning, using computational modelling. The findings support a role of serotonin in behavioral flexibility and plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness') or reinforcement learning rates following manipulations intended to increase or decrease serotonin function. More specifically, the rate at which expected value increased following reward and decreased following punishment (reward and punishment 'learning rates') was greatest after sub-chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. Conversely, humans given a single dose of an SSRI (20 mg escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice repetition irrespective of the outcome produced, was likewise increased in rats after the 12-day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. These common effects of serotonergic manipulations on rats and humans-identified via computational modelling-suggest an evolutionarily conserved role for serotonin in plasticity and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric disorders.


Assuntos
Citalopram , Serotonina , Humanos , Ratos , Animais , Serotonina/fisiologia , Citalopram/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Reforço Psicológico , Reversão de Aprendizagem/fisiologia
3.
Sci Transl Med ; 15(690): eade1779, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018416

RESUMO

Poor outcomes are common in individuals with anxiety and depression, and the brain circuits underlying symptoms and treatment responses remain elusive. To elucidate these neural circuits, experimental studies must specifically manipulate them, which is only possible in animals. Here, we used a chemogenetics strategy involving engineered designer receptors exclusively activated by designer drugs (DREADDs) to activate a region of the marmoset brain that is dysfunctional in human patients with major depressive disorder, called the subcallosal anterior cingulate cortex area 25 (scACC-25). Using this DREADDs system, we identified separate scACC-25 neural circuits that underlie specific components of anhedonia and anxiety in marmosets. Activation of the neural pathway connecting the scACC-25 to the nucleus accumbens (NAc) caused blunting of anticipatory arousal (a form of anhedonia) in marmosets in response to a reward-associated conditioned stimulus in an appetitive Pavlovian discrimination test. Separately, activation of the circuit between the scACC-25 and the amygdala increased a measure of anxiety (the threat response score) when marmosets were presented with an uncertain threat (human intruder test). Using the anhedonia data, we then showed that the fast-acting antidepressant ketamine when infused into the NAc of marmosets prevented anhedonia after scACC-25 activation for more than 1 week. These neurobiological findings provide targets that could contribute to the development of new treatment strategies.


Assuntos
Anedonia , Transtorno Depressivo Maior , Animais , Humanos , Anedonia/fisiologia , Callithrix , Transtorno Depressivo Maior/tratamento farmacológico , Ansiedade , Encéfalo
4.
Cereb Cortex ; 31(2): 1090-1105, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33043981

RESUMO

Cross-species studies have identified an evolutionarily conserved role for serotonin in flexible behavior including reversal learning. The aim of the current study was to investigate the contribution of serotonin within the orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) to visual discrimination and reversal learning. Male Lister Hooded rats were trained to discriminate between a rewarded (A+) and a nonrewarded (B-) visual stimulus to receive sucrose rewards in touchscreen operant chambers. Serotonin was depleted using surgical infusions of 5,7-dihydroxytryptamine (5,7-DHT), either globally by intracebroventricular (i.c.v.) infusions or locally by microinfusions into the OFC or mPFC. Rats that received i.c.v. infusions of 5,7-DHT before initial training were significantly impaired during both visual discrimination and subsequent reversal learning during which the stimulus-reward contingencies were changed (A- vs. B+). Local serotonin depletion from the OFC impaired reversal learning without affecting initial discrimination. After mPFC depletion, rats were unimpaired during reversal learning but slower to respond at the stimuli during all the stages; the mPFC group was also slower to learn during discrimination than the OFC group. These findings extend our understanding of serotonin in cognitive flexibility by revealing differential effects within two subregions of the prefrontal cortex in visual discrimination and reversal learning.


Assuntos
Aprendizagem por Discriminação/fisiologia , Córtex Pré-Frontal/metabolismo , Reversão de Aprendizagem/fisiologia , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Percepção Visual/fisiologia , 5,6-Di-Hidroxitriptamina/administração & dosagem , 5,6-Di-Hidroxitriptamina/análogos & derivados , 5,6-Di-Hidroxitriptamina/toxicidade , Animais , Creatinina/administração & dosagem , Creatinina/análogos & derivados , Creatinina/toxicidade , Aprendizagem por Discriminação/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Estimulação Luminosa/métodos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Reversão de Aprendizagem/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
5.
J Psychopharmacol ; 34(12): 1371-1381, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103560

RESUMO

BACKGROUND: Thalamic subregions mediate various cognitive functions, including attention, inhibitory response control and decision making. Such neuronal activity is modulated by cholinergic thalamic afferents and deterioration of such modulatory signaling has been theorised to contribute to cognitive decline in neurodegenerative disorders. However, the thalamic subnuclei and cholinergic receptors involved in cognitive functioning remain largely unknown. AIMS: We investigated whether muscarinic or nicotinic receptors in the mediodorsal thalamus and anterior thalamus contribute to rats' performance in the five-choice serial reaction time task, which measures sustained visual attention and impulsive action. METHODS: Male Long-Evans rats were trained in the five-choice serial reaction time task then surgically implanted with guide cannulae targeting either the mediodorsal thalamus or anterior thalamus. Reversible inactivation of either the mediodorsal thalamus or anterior thalamus were achieved with infusions of the γ-aminobutyric acid-ergic agonists muscimol and baclofen prior to behavioural assessment. To investigate cholinergic mechanisms, we also assessed the behavioural effects of locally administered nicotinic (mecamylamine) and muscarinic (scopolamine) receptor antagonists. RESULTS: Reversible inactivation of the mediodorsal thalamus severely impaired discriminative accuracy and response speed and increased omissions. Inactivation of the anterior thalamus produced less profound effects, with impaired accuracy at the highest dose. In contrast, blocking cholinergic transmission in these regions did not significantly affect five-choice serial reaction time task performance. CONCLUSIONS/INTERPRETATIONS: These findings show the mediodorsal thalamus plays a key role in visuospatial attentional performance that is independent of local cholinergic neurotransmission.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Atenção/fisiologia , Agonistas GABAérgicos/farmacologia , Comportamento Impulsivo/fisiologia , Núcleo Mediodorsal do Tálamo/metabolismo , Antagonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Desempenho Psicomotor/fisiologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Agonistas GABAérgicos/administração & dosagem , Comportamento Impulsivo/efeitos dos fármacos , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Long-Evans , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
6.
Neuropsychopharmacology ; 45(5): 736-744, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940660

RESUMO

Impaired cognitive flexibility in visual reversal-learning tasks has been observed in a wide range of neurological and neuropsychiatric disorders. Although both human and animal studies have implicated striatal D2-like and D1-like receptors (D2R; D1R) in this form of flexibility, less is known about the contribution they make within distinct sub-regions of the striatum and the different phases of visual reversal learning. The present study investigated the involvement of D2R and D1R during the early (perseverative) phase of reversal learning as well as in the intermediate and late stages (new learning) after microinfusions of D2R and D1R antagonists into the nucleus accumbens core and shell (NAcC; NAcS), the anterior and posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) on a touchscreen visual serial reversal-learning task. Reversal learning was improved after dopamine receptor blockade in the nucleus accumbens; the D1R antagonist, SCH23390, in the NAcS and the D2R antagonist, raclopride, in the NAcC selectively reduced early, perseverative errors. In contrast, reversal learning was impaired by D2R antagonism, but not D1R antagonism, in the dorsal striatum: raclopride increased errors in the intermediate phase after DMS infusions, and increased errors across phases after DLS infusions. These findings indicate that D1R and D2R modulate different stages of reversal learning through effects localised to different sub-regions of the striatum. Thus, deficits in behavioral flexibility observed in disorders linked to dopamine perturbations may be attributable to specific D1R and D2R dysfunction in distinct striatal sub-regions.


Assuntos
Neostriado/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Discriminação Psicológica/fisiologia , Masculino , Ratos , Percepção Visual/fisiologia
7.
Psychol Neurosci ; 13(3): 438-458, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33613854

RESUMO

Adapting behavior to a dynamic environment requires both steadiness when the environment is stable and behavioral flexibility in response to changes. Much evidence suggests that cognitive flexibility, which can be operationalized in reversal learning tasks, is mediated by cortico-striatal circuitries, with the orbitofrontal cortex (OFC) playing a prominent role. The OFC is a functionally heterogeneous region, and we have previously reported differential roles of lateral (lOFC) and medial (mOFC) regions in a touchscreen serial visual reversal learning task for rats using pharmacological inactivation. Here, we investigated the effects of pharmacological overactivation of these regions using a glutamate transporter 1 (GLT-1) inhibitor, dihydrokainate (DHK), which increases extracellular glutamate by blocking its reuptake. We also tested the impact of antagonism of the serotonin 2A receptor (5-HT2AR), which modulates glutamate action, in the mOFC and lOFC on the same task. Overactivation induced by DHK produced dissociable effects in the mOFC and lOFC, with more prominent effects in the mOFC, specifically improving performance in the early, perseveration phase. Intra-lOFC DHK increased the number of omitted responses without affecting errors. In contrast, blocking the 5-HT2AR in the lOFC impaired reversal learning overall, while mOFC 5-HT2AR blockade had no effect. These results further support dissociable roles of the rodent mOFC and lOFC in deterministic visual reversal learning and indicate that modulating glutamate transmission through blocking the GLT-1 and the 5-HT2AR have different roles in these two structures.

9.
PLoS Genet ; 15(12): e1008455, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800589

RESUMO

SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte de Cátions/genética , Memória de Longo Prazo , Memória de Curto Prazo , Poliaminas/metabolismo , Animais , Sinalização do Cálcio , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Aprendizagem em Labirinto , Camundongos , Plasticidade Neuronal , Ácido gama-Aminobutírico/metabolismo
10.
Brain Struct Funct ; 224(9): 3095-3116, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31506825

RESUMO

Transgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouse VAChT copy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic-pituitary-adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouse VAChT gene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats, VAChT overexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats.


Assuntos
Ansiedade/metabolismo , Atenção/fisiologia , Encéfalo/metabolismo , Atividade Motora/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Ansiedade/genética , Condicionamento Clássico , Medo , Dosagem de Genes , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos Long-Evans , Ratos Transgênicos
11.
Psychopharmacology (Berl) ; 236(8): 2307-2323, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31218428

RESUMO

RATIONALE: Dopamine D2-like receptors (D2R) are important drug targets in schizophrenia and Parkinson's disease, but D2R ligands also cause cognitive inflexibility such as poor reversal learning. The specific role of D2R in reversal learning remains unclear. OBJECTIVES: We tested the hypotheses that D2R agonism impairs reversal learning by blocking negative feedback and that antagonism of D1-like receptors (D1R) impairs learning from positive feedback. METHODS: Male Lister Hooded rats were trained on a novel visual reversal learning task. Performance on "probe trials", during which the correct or incorrect stimulus was presented with a third, probabilistically rewarded (50% of trials) and therefore intermediate stimulus, revealed individual learning curves for the processes of positive and negative feedback. The effects of D2R and D1R agonists and antagonists were evaluated. A separate cohort was tested on a spatial probabilistic reversal learning (PRL) task after D2R agonism. Computational reinforcement learning modelling was applied to choice data from the PRL task to evaluate the contribution of latent factors. RESULTS: D2R agonism with quinpirole dose-dependently impaired both visual reversal and PRL. Analysis of the probe trials on the visual task revealed a complete blockade of learning from negative feedback at the 0.25 mg/kg dose, while learning from positive feedback was intact. Estimated parameters from the model that best described the PRL choice data revealed a steep and selective decrease in learning rate from losses. D1R antagonism had a transient effect on the positive probe trials. CONCLUSIONS: D2R stimulation impairs reversal learning by blocking the impact of negative feedback.


Assuntos
Retroalimentação Fisiológica/fisiologia , Estimulação Luminosa/métodos , Receptores de Dopamina D2/metabolismo , Reversão de Aprendizagem/fisiologia , Percepção Espacial/fisiologia , Animais , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Masculino , Ratos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Reversão de Aprendizagem/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia
12.
Neuropsychopharmacology ; 44(13): 2163-2173, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30952156

RESUMO

Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n = 24) were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability. A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait anxiety may be a latent variable underlying this interaction.


Assuntos
Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Reversão de Aprendizagem/efeitos dos fármacos , Reversão de Aprendizagem/fisiologia , Recompensa , Animais , Condicionamento Operante/efeitos dos fármacos , Masculino , Modelos Neurológicos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismo
13.
Psychopharmacology (Berl) ; 235(7): 2101-2111, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682701

RESUMO

RATIONALE: Dysregulation of the serotonin (5-HT) system is a pathophysiological component in major depressive disorder (MDD), a condition closely associated with abnormal emotional responsivity to positive and negative feedback. However, the precise mechanism through which 5-HT tone biases feedback responsivity remains unclear. 5-HT2C receptors (5-HT2CRs) are closely linked with aspects of depressive symptomatology, including abnormalities in reinforcement processes and response to stress. Thus, we aimed to determine the impact of 5-HT2CR function on response to feedback in biased reinforcement learning. METHODS: We used two touchscreen assays designed to assess the impact of positive and negative feedback on probabilistic reinforcement in mice, including a novel valence-probe visual discrimination (VPVD) and a probabilistic reversal learning procedure (PRL). Systemic administration of a 5-HT2CR agonist and antagonist resulted in selective changes in the balance of feedback sensitivity bias on these tasks. RESULTS: Specifically, on VPVD, SB 242084, the 5-HT2CR antagonist, impaired acquisition of a discrimination dependent on appropriate integration of positive and negative feedback. On PRL, SB 242084 at 1 mg/kg resulted in changes in behaviour consistent with reduced sensitivity to positive feedback. In contrast, WAY 163909, the 5-HT2CR agonist, resulted in changes associated with increased sensitivity to positive feedback and decreased sensitivity to negative feedback. CONCLUSIONS: These results suggest that 5-HT2CRs tightly regulate feedback sensitivity bias in mice with consequent effects on learning and cognitive flexibility and specify a framework for the influence of 5-HT2CRs on sensitivity to reinforcement.


Assuntos
Aminopiridinas/farmacologia , Azepinas/farmacologia , Indóis/farmacologia , Receptor 5-HT2C de Serotonina , Reversão de Aprendizagem/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Transtorno Depressivo Maior , Aprendizagem por Discriminação/efeitos dos fármacos , Masculino , Camundongos , Aprendizagem por Probabilidade , Reforço Psicológico , Análise e Desempenho de Tarefas , Percepção Visual
14.
Neuropsychopharmacology ; 43(3): 617-626, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28895569

RESUMO

Binge-eating disorder (BED) is characterized by recurring episodes of excessive consumption of palatable food and an increased sensitivity to food cues. Patients with BED display an addiction-like symptomatology and the dopamine system might be a potential treatment target. The clinically safe monoamine stabilizer (-)-OSU6162 (OSU6162) restores dopaminergic dysfunction in long-term alcohol-drinking rats and shows promise as a novel treatment for alcohol use disorder. Here, the effects of OSU6162 on consummatory (binge-like eating) and appetitive (cue-controlled seeking) behavior motivated by chocolate-flavored sucrose pellets were evaluated in non-food-restricted male Lister Hooded rats. OSU6162 significantly reduced binge-like intake of chocolate-flavored sucrose pellets without affecting prior chow intake. Furthermore, OSU6162 significantly reduced the cue-controlled seeking of chocolate-flavored sucrose pellets under a second-order schedule of reinforcement before, but not after, the delivery and ingestion of reward, indicating a selective effect on incentive motivational processes. In contrast, the dopamine D2/D3 receptor antagonist raclopride reduced the seeking of chocolate-flavored sucrose pellets both pre- and post reward ingestion and also reduced responding under simpler schedules of seeking behavior. The D1/5 receptor antagonist SCH23390 had no effect on instrumental behavior under any reinforcement schedule tested. Finally, local administration of OSU6162 into the nucleus accumbens core, but not dorsolateral striatum, selectively reduced cue-controlled sucrose seeking. In conclusion, the present results show that OSU6162 reduces binge-like eating behavior and attenuates the impact of cues on seeking of palatable food. This indicates that OSU6162 might serve as a novel BED medication.


Assuntos
Transtorno da Compulsão Alimentar/tratamento farmacológico , Comportamento Alimentar/efeitos dos fármacos , Neurotransmissores/farmacologia , Piperidinas/farmacologia , Recompensa , Animais , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Benzazepinas/farmacologia , Transtorno da Compulsão Alimentar/metabolismo , Bulimia/tratamento farmacológico , Bulimia/metabolismo , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Sacarose Alimentar , Relação Dose-Resposta a Droga , Comportamento Alimentar/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Racloprida/farmacologia , Ratos
15.
Psychopharmacology (Berl) ; 234(19): 2837-2857, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28744563

RESUMO

RATIONALE: Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES: We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS: MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS: Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 µg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION: The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.


Assuntos
Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Acetato de Metilazoximetanol/toxicidade , Nootrópicos/uso terapêutico , Desempenho Psicomotor/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Animais , Atenção/efeitos dos fármacos , Atenção/fisiologia , Cognição/fisiologia , Função Executiva/efeitos dos fármacos , Masculino , Neurotoxinas/toxicidade , Nootrópicos/farmacologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Esquizofrenia/induzido quimicamente , Resultado do Tratamento
17.
Psychopharmacology (Berl) ; 234(9-10): 1557-1571, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28251298

RESUMO

RATIONALE: Impairments in behavioral flexibility lie at the core of anxiety and obsessive-compulsive disorders. Few studies, however, have investigated the neural substrates of natural variation in behavioral flexibility and whether inflexible behavior is linked to anxiety and peripheral markers of stress and monoamine function. OBJECTIVE: The objective of the study was to investigate peripheral and central markers associated with perseverative behavior on a spatial-discrimination serial reversal learning task. METHODS: Rats were trained on a reversal learning task prior to blood sampling, anxiety assessment, and the behavioral evaluation of selective monoamine oxidase-A (MAO-A) and MAO-B inhibitors, which block the degradation of serotonin (5-HT), dopamine (DA), and noradrenaline (NA). RESULTS: Perseveration correlated positively with 5-HT levels in blood plasma and inversely with trait anxiety, as measured on the elevated plus maze. No significant relationships were found between perseveration and the stress hormone corticosterone or the 5-HT precursor tryptophan. Reversal learning was significantly improved by systemic administration of the MAO-A inhibitor moclobemide but not by the MAO-B inhibitor lazabemide. Moclobemide also increased latencies to initiate a new trial following an incorrect response suggesting a possible role in modulating behavioral inhibition to negative feedback. MAO-A but not MAO-B inhibition resulted in pronounced increases in 5-HT and NA content in the orbitofrontal cortex and dorsal raphé nuclei and increased 5-HT and DA content in the basolateral amygdala and dorsomedial striatum. CONCLUSIONS: These findings indicate that central and peripheral monoaminergic mechanisms underlie inter-individual variation in behavioral flexibility, which overlaps with trait anxiety and depends on functional MAO-A activity.


Assuntos
Ansiedade/sangue , Aprendizagem por Discriminação/fisiologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/sangue , Reversão de Aprendizagem/fisiologia , Aprendizagem Seriada/fisiologia , Serotonina/sangue , Animais , Ansiedade/tratamento farmacológico , Aprendizagem por Discriminação/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Reversão de Aprendizagem/efeitos dos fármacos , Aprendizagem Seriada/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
18.
Neurosci Biobehav Rev ; 56: 1-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26112128

RESUMO

Executive function is commonly assessed by assays of cognitive flexibility such as reversal learning and attentional set-shifting. Disrupted performance in these assays, apparent in many neuropsychiatric disorders, is frequently interpreted as inability to overcome prior associations with reward. However, non-rewarded or irrelevant associations may be of considerable importance in both discrimination learning and cognitive flexibility. Non-rewarded associations can have greater influence on choice behaviour than rewarded associations in discrimination learning. Pathology-related deficits in cognitive flexibility can produce selective disruptions to both the processing of irrelevant associations and associations with reward. Genetic and pharmacological animal models demonstrate that modulation of reversal learning may result from alterations in either rewarded or non-rewarded associations. Successful performance in assays of cognitive flexibility can therefore depend on a combination of rewarded, non-rewarded, and irrelevant associations derived from previous learning, accounting for some inconsistencies observed in the literature. Taking this combination into account may increase the validity of animal models and may also reveal pathology-specific differences in problem solving and executive function.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Reversão de Aprendizagem/fisiologia , Recompensa , Animais , Aprendizagem por Discriminação , Ratos
19.
PLoS One ; 10(6): e0122061, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047506

RESUMO

G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12-48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward.


Assuntos
Ingestão de Alimentos , Receptores Acoplados a Proteínas G/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Evolução Biológica , Encéfalo/metabolismo , Hipotálamo/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/genética
20.
Pharmacol Biochem Behav ; 132: 63-70, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25743187

RESUMO

Cognitive impairments are observable in over half of cases with alcoholism, deficits in spatial working memory being particularly common. Previously we observed that rats make more alternation errors in a Y-maze test of spontaneous alternation behaviour/spatial working memory after 5-day intermittent ethanol. Here we used qPCR to quantify changes in gene expression accompanying this behavioural impairment. Male Wistar rats were treated with either saline or ethanol (1 or 2.5g/kg) for 5days followed by 2 drug-free days. Brains were dissected after Y-maze analysis and RNA was extracted from the medial prefrontal cortex, hippocampus and nucleus accumbens. Using the Qiagen GABA & Glutamate PCR array we measured changes in these two neurotransmitter systems. A dose of 1g/kg ethanol did not affect spontaneous alternation behaviour or any other behavioural variable. 2.5g/kg significantly decreased % correct alternations (p=0.028) without affecting total distance (p=0.54) and increased time in the choice area (p=0.023) at the Y-maze centre, indicating a possible impairment in decision-making. In the medial prefrontal cortex, 2.5g/kg ethanol decreased mRNA expression of brain-derived neurotrophic factor, NMDA NR2A subunit, mGluR8 receptor, Homer1, the glutamate transporters SLC1a1 and SLC1a6 and Srr. In the nucleus accumbens this dose did not affect mRNA expression of the dopamine D1 or D2 receptors but did upregulate the GABA transporter GAT-3. Even if only correlational, these data suggest that gene expression changes in the medial prefrontal cortex and associated cognitive impairment occur before adaptation of the dopaminergic system and, presumably, drug dependence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...