Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 49(9): 4934-4943, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33956139

RESUMO

Novel tools for in silico design of RNA constructs such as riboregulators are required in order to reduce time and cost to production for the development of diagnostic and therapeutic advances. Here, we present MoiRNAiFold, a versatile and user-friendly tool for de novo synthetic RNA design. MoiRNAiFold is based on Constraint Programming and it includes novel variable types, heuristics and restart strategies for Large Neighborhood Search. Moreover, this software can handle dozens of design constraints and quality measures and improves features for RNA regulation control of gene expression, such as Translation Efficiency calculation. We demonstrate that MoiRNAiFold outperforms any previous software in benchmarking structural RNA puzzles from EteRNA. Importantly, with regard to biologically relevant RNA designs, we focus on RNA riboregulators, demonstrating that the designed RNA sequences are functional both in vitro and in vivo. Overall, we have generated a powerful tool for de novo complex RNA design that we make freely available as a web server (https://moiraibiodesign.com/design/).


Assuntos
RNA/química , Software , Sequência de Bases , Simulação por Computador , Regulação da Expressão Gênica , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Biologia Sintética/métodos
3.
Carbohydr Polym ; 252: 117121, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183587

RESUMO

Depolymerization of chitin results in chitooligosaccharides (COS) that induce immunostimulatory effects and disease protective responses and have many potential applications in agriculture and medicine. Isolation of bioactive COS with degree of polymerization (DP) larger than six from chitin hydrolyzates is hampered by their water insolubility. Enzymatic synthesis by exploiting the transglycosylation activity of GH18 chitinases offers a potential strategy to access oligomers in the range of bioactive DPs. We engineered SpChiD chitinase as a glycosynthase by mutation of the assisting residue of the catalytic triad in the substrate-assisted mechanism for polymerization of an oxazoline substrate (DP5ox). The insoluble polymer containing DP10 was partially hydrolyzed due to the significant residual hydrolase activity of the mutant enzyme. Combined mutations that strongly reduce the hydrolytic activity, in which the original catalytic triad only retains the essential acid/base residue, together with neighboring mutations in the -1/+1 subsites region, render glycosynthase-like chitinases able to produce chitin oligomers with DP10 as major product in good yields.


Assuntos
Quitina/análogos & derivados , Quitinases/metabolismo , Catálise , Domínio Catalítico , Quitina/metabolismo , Quitinases/genética , Quitosana , Hidrólise , Mutação , Oligossacarídeos , Polimerização , Especificidade por Substrato
4.
Carbohydr Res ; 478: 1-9, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31005672

RESUMO

Chitooligosaccharides (COS), the depolymerization products of chitin, have many potential applications in agriculture and medicine since they induce immunostimulating effects and disease protective responses. Most of their biological activities require degrees of polymerization (DP) larger than the tetrasaccharide, but structurally well-defined COS with DP larger than six are difficult to produce due to their high insolubility and complex isolation from chitin hydrolysates. Enzymatic synthesis by exploiting the transglycosylation activity of chitinases offers a potential strategy for the assembly of oligomers in the range of bioactive DPs. We here explore the glycosynthase-like activity of six GH18 chitinases from bacterial and archaeal origin by mutating the catalytic assisting residue in the substrate-assisted mechanism of this enzyme family. The alanine mutants at the assisting residue have a significant, but not essential, effect on the hydrolase activity. We studied the ability of the alanine mutants at the assisting residue to catalyze the polymerization of an oxazoline derivative as donor substrate, selecting the oxazoline of pentaacetylchitopentaose (DP5ox) with the aim of obtaining larger oligomers/polymers that, being insoluble, might be resistant to further reactions by the hydrolytically compromised mutant enzymes. For all the enzymes, insoluble polymeric material was obtained, with DP10 as major component, but other COS with different DPs were also obtained, limiting the practical application to produce oligomers/polymers with a defined DP. The balance between the residual hydrolase activity of the mutant enzymes and the solubility/precipitation kinetics still lead to hydrolysis and/or transglycosylation reactions on the newly formed products. From the selected enzymes, the Thermococcus kodakaraensis ChiA D1022A mutant gave the best results, with the formation of insoluble polymers in 45% yield (w/w) and containing about 55% of the target DP10 product.


Assuntos
Quitina/análogos & derivados , Quitinases/genética , Quitinases/metabolismo , Biocatálise , Configuração de Carboidratos , Quitina/biossíntese , Quitina/química , Quitosana , Mutação , Oligossacarídeos , Polimerização
5.
Chem Biol Interact ; 234: 105-13, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25619643

RESUMO

Prostaglandins (PGs) are lipid compounds derived from arachidonic acid by the action of cyclooxygenases, acting locally as messenger molecules in a wide variety of physiological processes, such as inflammation, cell survival, apoptosis, smooth muscle contraction, adipocyte differentiation, vasodilation and platelet aggregation inhibition. In the inactivating pathway of PGs, the first metabolic intermediates are 15-keto-PGs, which are further converted into 13,14-dihydro-15-keto-PGs by different enzymes having 15-keto-PG reductase activity. Three human PG reductases (PGR), zinc-independent members of the medium-chain dehydrogenase/reductase (MDR) superfamily, perform the first irreversible step of the degradation pathway. We have focused on the characterization of the recombinant human enzyme prostaglandin reductase 1 (PGR1), also known as leukotriene B4 dehydrogenase. Only a partial characterization of this enzyme, isolated from human placenta, had been previously reported. In the present work, we have developed a new HPLC-based method for the determination of the 15-keto-PG reductase activity. We have performed an extensive kinetic characterization of PGR1, which catalyzes the NADPH-dependent reduction of the α,ß-double bond of aliphatic and aromatic aldehydes and ketones, and 15-keto-PGs. PGR1 also shows low activity in the oxidation of leukotriene B4. The best substrates in terms of kcat/Km were 15-keto-PGE2, trans-3-nonen-2-one and trans-2-decenal. Molecular docking simulations, based on the three-dimensional structure of the human enzyme (PDB ID 2Y05), and site-directed mutagenesis studies were performed to pinpoint important structural determinants, highlighting the role of Arg56 and Tyr245 in 15-keto-PG binding. Finally, inhibition analysis was done using non-steroidal anti-inflammatory drugs (NSAIDs) as potential inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade por Substrato/genética , Aldeídos/metabolismo , Alcenos/metabolismo , Sequência de Aminoácidos , Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Humanos , Cetonas/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , NADP/metabolismo , Oxirredutases/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA