Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517073

RESUMO

Cervical cancer poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide and resulting in approximately 300,000 deaths yearly, predominantly caused by high-risk human papillomavirus strains (HPV), mainly types 16 and 18. The scenario poses the urgent need of the hour to develop effective treatment strategies that can address the complexity of cervical cancer and multitargeted inhibitor designing that holds promise as it can simultaneously target multiple proteins and pathways involved in its progression and have the potential to enhance treatment efficacy, reduce the likelihood of drug resistance. In this study, we have performed multitargeted molecular docking of FDA-approved drugs against cervical cancer replication and maintenance proteins- Xenopus kinesin-like protein-2 (3KND), cell division cycle protein-20 (4N14), MCM2-histone complex (4UUZ) and MCM6 Minichromosome maintenance (2KLQ) with HTVS, SP and XP algorithms and have obtained the docking and MM\GBSA score ranging from -8.492 to -5.189 Kcal/mol and -58.16 to -39.07 Kcal/mol. Further, the molecular interaction fingerprints identified ALA, THR, SER, ASN, LEU, and ILE were among the most interacted residues, leaning towards hydrophobic and polar amino acids. The pharmacokinetics and DFT of the compound have shown promising results. The complexes were simulated for 100 ns to study the stability by computing the deviation, fluctuations, and intermolecular interactions formed during the simulation. This study produced promising results, satisfying the criteria that Mitoxantrone 2HCl can be a multitargeted inhibitor against cervical cancer proteins-however, experimental validation is a must before human use.Communicated by Ramaswamy H. Sarma.

2.
Int J Biol Macromol ; 262(Pt 2): 130146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365140

RESUMO

Integrin-linked kinase (ILK), a ß1-integrin cytoplasmic domain interacting protein, supports multi-protein complex formation. ILK-1 is involved in neurodegenerative diseases by promoting neuro-inflammation. On the other hand, its overexpression induces epithelial-mesenchymal transition (EMT), which is a major hallmark of cancer and activates various factors associated with a tumorigenic phenotype. Thus, ILK-1 is considered as an attractive therapeutic target. We investigated the binding affinity and ILK-1 inhibitory potential of noscapine (NP) using spectroscopic and docking approaches followed by enzyme inhibition activity. A strong binding affinity of NP was measured for the ILK-1 with estimated Ksv (M-1) values of 1.9 × 105, 3.6 × 105, and 4.0 × 105 and ∆G0 values (kcal/mol) -6.19554, -7.8557 and -8.51976 at 298 K, 303 K, and 305 K, respectively. NP binds to ILK-1 with a docking score of -6.6 kcal/mol and forms strong interactions with active-site pocket residues (Lys220, Arg323, and Asp339). The binding constant for the interaction of NP to ILK-1 was 1.04 × 105 M-1, suggesting strong affinity and excellent ILK-1 inhibitory potential (IC50 of ∼5.23µM). Conformational dynamics of ILK-1 were also studied in the presence of NP. We propose that NP presumably inhibits ILK-1-mediated phosphorylation of various downstream signalling pathways that are involved in cancer cell survival and neuroinflammation.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Noscapina , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
3.
Curr Issues Mol Biol ; 44(9): 4045-4058, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36135189

RESUMO

Ex vivo expanded decidua-basalis(DB)-derived mesenchymal stem cells (MSCs) obtained from single donors have demonstrated therapeutic benefits in in vitro and in vivo studies. In this report, the intravenous and subcutaneous administration of DB-MSCs obtained from five healthy donors was assessed considering clinical grade proliferation, accessibility, and toxic effects in Wistar albino rats. The ability of the obtained DB-MSCs for differentiating, as well as their expression of several cell surface markers and immunomodulatory activities, were all assessed. Clinical standard proliferated cells were administered to animals intravenously and subcutaneously in a series of preclinical models in order to assess their in vivo toxicity, general safety, and tumorigenic possibilities. We established that DB cells exhibit structural and functional traits with MSCs. At various doses supplied intravenously or subcutaneously, the research showed no fatality, abnormal response to therapy, or substantial pathological modifications in the rats. Furthermore, there was no indication of prenatal damage in the same animal species when the rats were repeatedly treated with DBMSCs. Thus, DBMSCs were demonstrated to be non-toxic, non-teratogenic, and non-tumorigenic. To determine whether they can be administrated to human patients without risk, more investigation is recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...