Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761315

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social communication and repetitive behaviors. The exact causes of ASD remain elusive and likely involve a combination of genetic, environmental, and neurobiological factors. Doctors often face challenges in accurately identifying ASD early due to its complex and diverse presentation. Early detection and intervention are crucial for improving outcomes for individuals with ASD. Early diagnosis allows for timely access to appropriate interventions, leading to better social and communication skills development. Artificial intelligence techniques, particularly facial feature extraction using machine learning algorithms, display promise in aiding the early detection of ASD. By analyzing facial expressions and subtle cues, AI models identify patterns associated with ASD features. This study developed various hybrid systems to diagnose facial feature images for an ASD dataset by combining convolutional neural network (CNN) features. The first approach utilized pre-trained VGG16, ResNet101, and MobileNet models. The second approach employed a hybrid technique that combined CNN models (VGG16, ResNet101, and MobileNet) with XGBoost and RF algorithms. The third strategy involved diagnosing ASD using XGBoost and an RF based on features of VGG-16-ResNet101, ResNet101-MobileNet, and VGG16-MobileNet models. Notably, the hybrid RF algorithm that utilized features from the VGG16-MobileNet models demonstrated superior performance, reached an AUC of 99.25%, an accuracy of 98.8%, a precision of 98.9%, a sensitivity of 99%, and a specificity of 99.1%.

2.
Comput Biol Chem ; 102: 107788, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410240

RESUMO

Predicting Unified Parkinson's Disease Rating Scale (UPDRS) in Total- UPDRS and Motor-UPDRS clinical scales is an important part of controlling PD. Computational intelligence approaches have been used effectively in the early diagnosis of PD by predicting UPDRS. In this research, we target to present a combined approach for PD diagnosis using an ensemble learning approach with the ability of online learning from clinical large datasets. The method is developed using Deep Belief Network (DBN) and Neuro-Fuzzy approaches. A clustering approach, Expectation-Maximization (EM), is used to handle large datasets. The Principle Component Analysis (PCA) technique is employed for noise removal from the data. The UPDRS prediction models are constructed for PD diagnosis. To handle the missing data, K-NN is used in the proposed method. We use incremental machine learning approaches to improve the efficiency of the proposed method. We assess our approach on a real-world PD dataset and the findings are assessed compared to other PD diagnosis approaches developed by machine learning techniques. The findings revealed that the approach can improve the UPDRS prediction accuracy and the time complexity of previous methods in handling large datasets.


Assuntos
Aprendizado Profundo , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Diagnóstico Precoce , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...