Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 348: 122688, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710284

RESUMO

Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1ß, MCP-1, JNK1, and TGF-ß in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.


Assuntos
Cádmio , Cardiotoxicidade , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Ubiquinona , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Cádmio/toxicidade , Regulação para Baixo/efeitos dos fármacos , Antioxidantes/farmacologia
2.
Life Sci ; 322: 121688, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030617

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic disorder characterized by hepatic lipid accumulation. This study explored the effect of betulin (BE), a terpenoid with promising antioxidant, anti-inflammatory and insulin sensitizing effects, on NAFLD induced by high fat diet (HFD). Rats received HFD and BE (15 and 30 mg/kg) for 12 weeks and blood and liver samples were collected for analyses. HFD caused hyperlipidemia, cholesterol and triglycerides accumulation in the liver, hepatocellular ballooning, fibrosis, insulin resistance (IR), lipid peroxidation (LPO), and NF-kB p65 upregulation. BE ameliorated serum and liver lipids, blood glucose and insulin, liver LPO, prevented steatosis and fibrosis, suppressed NF-kB p65 and enhanced antioxidants in HFD-fed rats. BE downregulated acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS), and upregulated Nrf2, HO-1 and SIRT1 in the liver of HFD-fed rats. In silico investigations revealed the binding affinity of BE towards FAS, NF-kB, Keap1, HO-1 and SIRT1. In conclusion, BE attenuated HFD-induced NAFLD by ameliorating hyperlipidemia, IR, lipogenesis, liver lipid accumulation, and oxidative stress. The protective effect of BE was associated with enhanced Nrf2/HO-1 signaling and SIRT1.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Triterpenos , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibrose , Insulina/metabolismo , Resistência à Insulina/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo , Sirtuína 1/metabolismo , Triterpenos/farmacologia , Triterpenos/metabolismo
3.
Ir J Med Sci ; 192(6): 2981-2986, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36869249

RESUMO

BACKGROUND: Gene regulation of IL-6 is characterized by the presence of inflammatory cytokines, bacterial products, viral infection, and activation of the diacylglycerol-, cyclic AMP-, or Ca + + -activated signal transduction pathways. AIM: Scaling and root planning (SRP), a non-surgical periodontal therapy, was studied in connection to several clinical parameters for its effect on salivary IL-6 levels in patients with generalized chronic periodontitis. METHODS: For this study, a total of 60 GCP patients were included. Plaque index (PI), gingival index (GI), pocket probing depth (PPD), bleeding on probing percentage (BOP%), and clinical attachment loss were among the clinical indicators covered (CAL). RESULTS: Following SRP, mean IL-6 levels in patients with GCP were significantly higher in the pre-treatment group (2.93 5.17 pg/ml; p 0.05) than in the posttreatment group (5.78 8.26 pg/ml; baseline). Pre- and post-treatment IL-6 levels for PI (pre), BOP percent (pre/post), GI (post), and PPD were found to be positively correlated (post). In patients with GCP, the study showed a statistically significant correlation between periodontal metrics and salivary IL-6. CONCLUSIONS: Changes in periodontal indices and IL-6 levels that are statistically significant over time indicate that non-surgical treatment is effective, and IL-6 can be regarded as a potent disease activity marker.


Assuntos
Periodontite Crônica , Humanos , Periodontite Crônica/tratamento farmacológico , Interleucina-6 , Aplainamento Radicular
4.
Biotechnol Genet Eng Rev ; : 1-14, 2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617893

RESUMO

Metastatic melanoma has less frequency, but considered as the most dreaded cancer. The combination of nivolumab & ipilimumab is proving their mettle in treating metastatic melanoma. The patients when administered with the combination of nivolumab & ipilimumab have shown improved median progression free survival, objective response rate and overall survival rate compared with nivolumab and ipilimumab monotherapy. The combination shrinks the tumor cells by attacking different checkpoints viz. CTLA-4 and PD-L1, respectively. The combination treatment reveals reduced disease progression and suggests nivolumab's non-cross resistant nature. The median progression free survival in "nivolumab plus ipilimumab" group has shown an increase of 66.7% and 296.6% in comparison to nivolumab and ipilimumab monotherapy. The other parameter viz. objective response rate improvement is equivalent to almost 14% and 38.6% when compared to nivolumab and ipilimumab monotherapy, respectively.

5.
Diagnostics (Basel) ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36552994

RESUMO

Lung cancer is the second most commonly diagnosed cancer in the world. In terms of the diagnosis of lung cancer, combination carcinoembryonic antigen (CEA) and cancer antigen 125 (CA125) detection had higher sensitivity, specificity, and diagnostic odds ratios than CEA detection alone. Most individuals with elevated serum CA125 levels had lung cancer that was either in stage 3 or stage 4. Serum CA125 levels were similarly elevated in lung cancer patients who also had pleural effusions or ascites. Furthermore, there is strong evidence that human lung cancer produces CA125 in vitro, which suggests that other clinical illnesses outside of ovarian cancer could also be responsible for the rise of CA125. MUC16 (CA125) is a natural killer cell inhibitor. As a screening test for lung and ovarian cancer diagnosis and prognosis in the early stages, CA125 has been widely used as a marker in three different clinical settings. MUC16 mRNA levels in lung cancer are increased regardless of gender. As well, increased expression of mutated MUC16 enhances lung cancer cells proliferation and growth. Additionally, the CA125 serum level is thought to be a key indicator for lung cancer metastasis to the liver. Further, CA125 could be a useful biomarker in other cancer types diagnoses like ovarian, breast, and pancreatic cancers. One of the important limitations of CA125 as a first step in such a screening technique is that up to 20% of ovarian tumors lack antigen expression. Each of the 10 possible serum markers was expressed in 29-100% of ovarian tumors with minimal or no CA125 expression. Therefore, there is a controversy regarding CA125 in the diagnosis and prognosis of lung cancer and other cancer types. In this state, preclinical and clinical studies are warranted to elucidate the clinical benefit of CA125 in the diagnosis and prognosis of lung cancer.

6.
Biotechnol Genet Eng Rev ; 38(2): 339-383, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35968863

RESUMO

Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.


Assuntos
DNA Tumoral Circulante , Exossomos , Células Neoplásicas Circulantes , Humanos , Biópsia Líquida/métodos , DNA Tumoral Circulante/genética , Biópsia , Células Neoplásicas Circulantes/patologia , Exossomos/patologia
7.
Cells ; 11(3)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35159361

RESUMO

Reactive oxygen and nitrogen species (RONS) are generated through various endogenous and exogenous processes; however, they are neutralized by enzymatic and non-enzymatic antioxidants. An imbalance between the generation and neutralization of oxidants results in the progression to oxidative stress (OS), which in turn gives rise to various diseases, disorders and aging. The characteristics of aging include the progressive loss of function in tissues and organs. The theory of aging explains that age-related functional losses are due to accumulation of reactive oxygen species (ROS), their subsequent damages and tissue deformities. Moreover, the diseases and disorders caused by OS include cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases and cancer. OS, induced by ROS, is neutralized by different enzymatic and non-enzymatic antioxidants and prevents cells, tissues and organs from damage. However, prolonged OS decreases the content of antioxidant status of cells by reducing the activities of reductants and antioxidative enzymes and gives rise to different pathological conditions. Therefore, the aim of the present review is to discuss the mechanism of ROS-induced OS signaling and their age-associated complications mediated through their toxic manifestations in order to devise effective preventive and curative natural therapeutic remedies.


Assuntos
Envelhecimento/patologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Humanos
8.
Diagnostics (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204428

RESUMO

4-Aminobiphenyl (4-ABP) and other related arylamines have emerged to be responsible for human urinary bladder tumors and cancers. Hemoglobin-ABP adducts have been recognized in the blood of smokers, and it builds up in the circulatory system over the period of years that might lead to a bladder tumor. N-hydroxy-Acetyl 4-Aminobiphenyl (N-OH-AABP) is one of the reactive forms of 4-ABP which has a potential to initiate tumor growth and causes cancer rapidly. In the present study, commercially available human DNA was modified by N-OH-AABP, and its modifications were analyzed biophysically from fluorescence spectroscopy and thermal denaturation studies. Further, Sera and IgG from bladder cancer patients' blood were assessed for affinity to native and N-OH-AABP modified human DNA using ELISA. The study showed N-OH-AABP caused damage in the structure of the DNA macromolecule and the perturbations resulting from damage leads to change in the Tm of the DNA molecule. Bladder cancer auto-antibodies, particularly in smoker group, showed preferential binding to N-OH-AABP modified human DNA. This study shows that N-OH-AABP modified DNA could be an antigenic stimulus for the generation of autoantibodies in the sera of bladder cancer patients.

9.
Semin Cancer Biol ; 86(Pt 3): 666-681, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216789

RESUMO

An overwhelming number of research articles have reported a strong relationship of the microbiome with cancer. Microbes have been observed more commonly in the body fluids like urine, stool, mucus of people with cancer compared to the healthy controls. The microbiota is responsible for both progression and suppression activities of various diseases. Thus, to maintain healthy human physiology, host and microbiota relationship should be in a balanced state. Any disturbance in this equilibrium, referred as microbiome dysbiosis becomes a prime cause for the human body to become more prone to immunodeficiency and cancer. It is well established that some of these microbes are the causative agents, whereas others may encourage the formation of tumours, but very little is known about how these microbial communications causing change at gene and epigenome level and trigger as well as encourage the tumour growth. Various studies have reported that microbes in the gut influence DNA methylation, DNA repair and DNA damage. The genes and pathways that are altered by gut microbes are also associated with cancer advancement, predominantly those implicated in cell growth and cell signalling pathways. This study exhaustively reviews the current research advancements in understanding of dysbiosis linked with colon, lung, ovarian, breast cancers and insights into the potential molecular targets of the microbiome promoting carcinogenesis, the epigenetic alterations of various potential targets by altered microbiota, as well as the role of various chemopreventive agents for timely prevention and customized treatment against various types of cancers.


Assuntos
Microbiota , Neoplasias , Humanos , Disbiose/complicações , Disbiose/genética , Epigenômica , Epigênese Genética , Neoplasias/genética
10.
Antioxidants (Basel) ; 10(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34679741

RESUMO

Oxygen is indispensable for most organisms on the earth because of its role in respiration. However, it is also associated with several unwanted effects which may sometimes prove fatal in the long run. Such effects are more evident in cells exposed to strong oxidants containing reactive oxygen species (ROS). The adverse outcomes of oxidative metabolism are referred to as oxidative stress, which is a staple theme in contemporary medical research. Oxidative stress leads to plasma membrane disruption through lipid peroxidation and has several other deleterious effects. A large body of literature suggests the involvement of ROS in cancer, ageing, and several other health hazards of the modern world. Plant-based cures for these conditions are desperately sought after as supposedly safer alternatives to mainstream medicines. Phytochemicals, which constitute a diverse group of plant-based substances with varying roles in oxidative reactions of the body, are implicated in the treatment of cancer, aging, and all other ROS-induced anomalies. This review presents a summary of important phytochemicals extracted from medicinal plants which are a part of Indian ethnomedicine and Ayurveda and describes their possible therapeutic significance.

11.
Saudi J Biol Sci ; 28(10): 5754-5759, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588887

RESUMO

Spodoptera frugiperda is a highly polyphagous migratory lepidopteran pest species. It causes infestation in crops leading to the severe crop losses. Being a new invasive parasite, its susceptibility to insecticides needs to be explored; and therefore, there is an urgent need to develop the potent insecticides for the effective control of this insect pest. To attain the crop sustainability, the antifeedant, toxicity and nutritional effects on larvae of Spodoptera frugiperda were studied with six mono- and eight bis- substituted chalcones. The antifeedant activity was calculated when 50% of the larvae control ate 50% of the diet through the FR factor. Toxicity was assessed through larval, pupal mortality and the emergence of adults and nutritional effects with consumption rates (IC), growth (GR) and consumption efficiency (EIC). The bis-chalcones 6b, 6e, 6f and 6h caused lethal effect on S. frugiperda in the first larval stages, being 6b the most toxic (85%). Adults who survived showed malformations and decreased size, which led to death. The larvae fed with aggregate in the bis-chalcones diet: 6b, 6e and 6f had the highest percentage of intake and the poorest conversion of nutrient absorption (ECI), which suggests that the larva metabolizes food for energy and results in a decrease of growth and death in early stages. Bis-chalcones showed more toxicity than mono-chalcones and 6b causes the most toxic and dietary change.

12.
Antibiotics (Basel) ; 10(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34439004

RESUMO

Antimicrobial resistance (AMR) is an emerging public health problem in modern times and the current COVID-19 pandemic has further exaggerated this problem. Due to bacterial co-infection in COVID-19 cases, an irrational consumption of antibiotics has occurred during the pandemic. This study aimed to observe the COVID-19 patients hospitalized from 1 March 2019 to 31 December 2020 and to evaluate the AMR pattern of bacterial agents isolated. This was a single-center study comprising 494 bacterial isolates (blood and urine) that were obtained from patients with SARS-CoV-2 admitted to the ICU and investigated in the Department of Microbiology of a tertiary care hospital in Delhi, India. Out of the total bacterial isolates, 55.46% were gram negative and 44.53% were gram positive pathogens. Of the blood samples processed, the most common isolates were CoNS (Coagulase Negative Staphylococcus) and Staphylococcus aureus. Amongst the urinary isolates, most common pathogens were Escherichia coli and Staphylococcus aureus. A total of 60% MRSA was observed in urine and blood isolates. Up to 40% increase in AMR was observed amongst these isolates obtained during COVID-19 period compared to pre-COVID-19 times. The overuse of antibiotics gave abundant opportunity for the bacterial pathogens to gradually develop mechanisms and to acquire resistance. Since the dynamics of SARS-COV-2 are unpredictable, a compromise on hospital antibiotic policy may ultimately escalate the burden of drug resistant pathogens in hospitals. A shortage of trained staff during COVID-19 pandemic renders it impossible to maintain these records in places where the entire hospital staff is struggling to save lives. This study highlights the extensive rise in the use of antibiotics for respiratory illness due to COVID-19 compared to antibiotic use prior to COVID-19 in ICUs. The regular prescription audit followed by a constant surveillance of hospital infection control practices by the dedicated teams and training of clinicians can improve the quality of medications in the long run and help to fight the menace of AMR.

13.
Antioxidants (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201737

RESUMO

Cosmetics, commonly known as 'makeup' are products that can enhance the appearance of the human body. Cosmetic products include hair dyes, shampoos, skincare, sunscreens, kajal, and other makeup products. Cosmetics are generally applied throughout the face and over the neck region. Sunlight has different wavelengths of light, which include UV-A, UV-B, UV-C, and other radiations. Most cosmetic products have absorption maxima (λmax) in the range of visible light and UV-R. The effect of light-induced photosensitization of cosmetic products, which results in the production of free radicals through type-I and type-II photosensitization mechanisms. Free-radicals-mediated DNA damage and oxidative stress are common consequences of cosmetic phototoxicity. Cosmetic phototoxicity may include percutaneous absorption, skin irritation, eye irritation, photosensitization, mutagenicity, and genotoxicity. Oxidative stress induces membrane lipid peroxidation, glycoxidation, and protein covalent modifications, resulting in their dysfunction. Natural antioxidants inhibit oxidative-stress-induced cosmetic toxicity. Sunlight-induced photodegradation and accumulation of cosmetic photoproducts are also a matter of serious concern. India has tropical weather conditions throughout the year and generally, a majority of human activities such as commerce, agriculture, sports, etc. are performed under bright sunlight conditions. Thus, more focused and dedicated research is warranted to explore the effects of cosmetics on oxidative stress, glycoxidation of biomolecules, and photoproducts accumulation for its total human safety.

14.
Cancer Genet ; 256-257: 115-121, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111657

RESUMO

Keratoacanthoma (KA) is a common cutaneous neoplasm which often resembles typical squamous cell carcinoma (SCC) in both its clinical and historical presentation. Several studies have attempted to identify methods for distinguishing between KA and SCC, however, none of these have proven to play any obvious roles in these tumors. Given this we went on to evaluate mitochondrial microsatellite instability (mtMSI) in KA and SCC in an effort to understand these tumors better. DNA was isolated from paired normal and tumoral tissues donated by 57 KA patients and 43 SCC patients. MtMSI was then analyzed using eight microsatellite markers and was observed in 2 (3.5%) of the 57 KA patients and 8 (18.6%) of the 43 SCC patients, respectively. MtMSI was also shown to affect different locations depending on tumor type. In KA patients, mtMSI was detected at mitochondrial D514 D-loop and presented with (CA) n repeats, in contrast, all of the SCC patient experienced mtMSI at the D310 with (C)n repeats of the D-loop region. These differences in location were found to be significant, which may support the hypothesis that KA and SCC have different pathogenetic pathways. Our results also suggest that mtMSI may be a candidate for developing novel differential diagnostic methods for KA and SCC.


Assuntos
Carcinoma de Células Escamosas/genética , Ceratoacantoma/genética , Instabilidade de Microssatélites , Mitocôndrias/genética , Neoplasias Cutâneas/genética , Sequência de Bases , DNA Mitocondrial/genética , Marcadores Genéticos , Humanos
15.
Minerva Med ; 112(6): 792-803, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34114450

RESUMO

BACKGROUND: Epigenetic modifications alter signaling and molecular pathways; moreover, they are an important therapeutic target. This study examined the effect of sulforaphane on molecular targets in HeLa cells. METHODS: Quantitative PCR of various molecular targets was performed. Activity of epigenetic enzymes was measured by ELISA and molecular docking analysis was conducted. Promoter methylation of some tumor suppressor genes was quantified using PCR based methylation array. In-silico protein-protein interaction network analysis was performed to understand the effect of transcriptional changes. RESULTS: Quantitative PCR demonstrated the transcriptional modulation of genes involved in proliferation, metastasis, inflammation, signal transduction pathways and chromatin modifiers. Sulforaphane reduced the enzymatic activity of DNA methyl transferases, histone deacetylases and histone methyltransferases. Molecular docking results suggest that sulforaphane competitively inhibited several DNA methyl transferases and histone deacetylases. Promoter 5'CpG methylation levels of selected tumor suppressor genes was found to be reduced which correlated with their transcriptional increase as well modulation of epigenetic enzymes. Further, protein-protein interaction network analysis discerned the participation of genes towards cancer pathways. Functional enrichment and pathway-based analysis represented the modulation of epigenetic and signaling pathways on sulforaphane treatment. CONCLUSIONS: The modulation in transcriptional status of epigenetic regulators, genes involved in tumorigenesis resulting in tumor suppressor genes demethylation and re-expression underscores the mechanism behind the anticancer effect of sulforaphane on HeLa cells.


Assuntos
Anticarcinógenos/farmacologia , Epigênese Genética/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Isotiocianatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos/farmacologia , Humanos
16.
Front Pharmacol ; 12: 770762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153741

RESUMO

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson's disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.

17.
Front Cardiovasc Med ; 8: 755321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071341

RESUMO

In fact, the risk of dying from CVD is significant when compared to the risk of developing end-stage renal disease (ESRD). Moreover, patients with severe CKD are often excluded from randomized controlled trials, making evidence-based therapy of comorbidities like CVD complicated. Thus, the goal of this study was to use an integrated bioinformatics approach to not only uncover Differentially Expressed Genes (DEGs), their associated functions, and pathways but also give a glimpse of how these two conditions are related at the molecular level. We started with GEO2R/R program (version 3.6.3, 64 bit) to get DEGs by comparing gene expression microarray data from CVD and CKD. Thereafter, the online STRING version 11.1 program was used to look for any correlations between all these common and/or overlapping DEGs, and the results were visualized using Cytoscape (version 3.8.0). Further, we used MCODE, a cytoscape plugin, and identified a total of 15 modules/clusters of the primary network. Interestingly, 10 of these modules contained our genes of interest (key genes). Out of these 10 modules that consist of 19 key genes (11 downregulated and 8 up-regulated), Module 1 (RPL13, RPLP0, RPS24, and RPS2) and module 5 (MYC, COX7B, and SOCS3) had the highest number of these genes. Then we used ClueGO to add a layer of GO terms with pathways to get a functionally ordered network. Finally, to identify the most influential nodes, we employed a novel technique called Integrated Value of Influence (IVI) by combining the network's most critical topological attributes. This method suggests that the nodes with many connections (calculated by hubness score) and high spreading potential (the spreader nodes are intended to have the most impact on the information flow in the network) are the most influential or essential nodes in a network. Thus, based on IVI values, hubness score, and spreading score, top 20 nodes were extracted, in which RPS27A non-seed gene and RPS2, a seed gene, came out to be the important node in the network.

18.
Cancer Epidemiol Biomarkers Prev ; 30(1): 217-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144283

RESUMO

BACKGROUND: Accumulating evidence suggests a relationship between endometrial cancer and ovarian cancer. Independent genome-wide association studies (GWAS) for endometrial cancer and ovarian cancer have identified 16 and 27 risk regions, respectively, four of which overlap between the two cancers. We aimed to identify joint endometrial and ovarian cancer risk loci by performing a meta-analysis of GWAS summary statistics from these two cancers. METHODS: Using LDScore regression, we explored the genetic correlation between endometrial cancer and ovarian cancer. To identify loci associated with the risk of both cancers, we implemented a pipeline of statistical genetic analyses (i.e., inverse-variance meta-analysis, colocalization, and M-values) and performed analyses stratified by subtype. Candidate target genes were then prioritized using functional genomic data. RESULTS: Genetic correlation analysis revealed significant genetic correlation between the two cancers (rG = 0.43, P = 2.66 × 10-5). We found seven loci associated with risk for both cancers (P Bonferroni < 2.4 × 10-9). In addition, four novel subgenome-wide regions at 7p22.2, 7q22.1, 9p12, and 11q13.3 were identified (P < 5 × 10-7). Promoter-associated HiChIP chromatin loops from immortalized endometrium and ovarian cell lines and expression quantitative trait loci data highlighted candidate target genes for further investigation. CONCLUSIONS: Using cross-cancer GWAS meta-analysis, we have identified several joint endometrial and ovarian cancer risk loci and candidate target genes for future functional analysis. IMPACT: Our research highlights the shared genetic relationship between endometrial cancer and ovarian cancer. Further studies in larger sample sets are required to confirm our findings.


Assuntos
Neoplasias do Endométrio/genética , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Locos de Características Quantitativas/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...