Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Sci Transl Med ; : eadn0223, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38753806

RESUMO

A protective human immunodeficiency virus (HIV) vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost following eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.

2.
Cell Host Microbe ; 32(5): 693-709.e7, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38670093

RESUMO

A major goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs). Although success has been achieved in initiating bnAb B cell lineages, design of boosting immunogens that select for bnAb B cell receptors with improbable mutations required for bnAb affinity maturation remains difficult. Here, we demonstrate a process for designing boosting immunogens for a V3-glycan bnAb B cell lineage. The immunogens induced affinity-matured antibodies by selecting for functional improbable mutations in bnAb precursor knockin mice. Moreover, we show similar success in prime and boosting with nucleoside-modified mRNA-encoded HIV-1 envelope trimer immunogens, with improved selection by mRNA immunogens of improbable mutations required for bnAb binding to key envelope glycans. These results demonstrate the ability of both protein and mRNA prime-boost immunogens for selection of rare B cell lineage intermediates with neutralizing breadth after bnAb precursor expansion, a key proof of concept and milestone toward development of an HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Linfócitos B , Anticorpos Anti-HIV , HIV-1 , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , HIV-1/genética , Camundongos , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Humanos , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia , Mutação , Desenvolvimento de Vacinas , Imunização Secundária , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
3.
Science ; 383(6684): eadg0564, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359115

RESUMO

Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.


Assuntos
Anticorpos Antivirais , Linfócitos B , Centro Germinativo , Infecções por Orthomyxoviridae , Orthomyxoviridae , Triexosilceramidas , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Triexosilceramidas/metabolismo , Triexosilceramidas/farmacologia , Animais , Camundongos , Camundongos Knockout , Humanos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia
4.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790573

RESUMO

Influenza viruses escape immunity due to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. Here, we demonstrate that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 binds and disengages CD19 from its chaperone CD81 for subsequent translocation to the B cell receptor (BCR) complex to trigger signaling. Abundance of Gb3 amplifies the PI3-kinase/Akt/Foxo1 pathway to drive affinity maturation. Moreover, this lipid regulates MHC-II expression to increase diversity of T follicular helper (Tfh) and GC B cells reactive with subdominant epitopes. In influenza infection, Gb3 promotes broadly reactive antibody responses and cross-protection. Thus, we show that Gb3 determines affinity as well as breadth in B cell immunity and propose this lipid as novel vaccine adjuvant against viral infection. One Sentence Summary: Gb3 abundance on GC B cells selects antibodies with high affinity and broad epitope reactivities, which are cross-protective against heterologous influenza infection.

5.
Proc Natl Acad Sci U S A ; 120(26): e2306564120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339228

RESUMO

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Recombinação V(D)J , Animais , Camundongos , Recombinação V(D)J/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Cromatina/metabolismo
6.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163018

RESUMO

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from V H , D, and J H gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a J H -based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to J H s to form a DJ H -RC. Igh has a provocative number and organization of CTCF-binding-elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the V H and D/J H domains, over 100 CBEs across the V H domain convergent to CBE1, and 10 clustered 3' Igh -CBEs convergent to CBE2 and V H CBEs. IGCR1 CBEs segregate D/J H and V H domains by impeding loop extrusion-mediated RAG-scanning. Down-regulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJ H -RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3' Igh -CBEs in regulating RAG-scanning and elucidate the mechanism of the "ordered" transition from D-to-J H to V H -to-DJ H recombination, we tested effects of deleting or inverting IGCR1 or 3' Igh -CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3' Igh -CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL down-regulation mechanism in progenitor B cells as opposed to a strict developmental switch. SIGNIFICANCE STATEMENT: To counteract diverse pathogens, vertebrates evolved adaptive immunity to generate diverse antibody repertoires through a B lymphocyte-specific somatic gene rearrangement process termed V(D)J recombination. Tight regulation of the V(D)J recombination process is vital to generating antibody diversity and preventing off-target activities that can predispose the oncogenic translocations. Recent studies have demonstrated V(D)J rearrangement is driven by cohesin-mediated chromatin loop extrusion, a process that establishes genomic loop domains by extruding chromatin, predominantly, between convergently-oriented CTCF looping factor-binding elements (CBEs). By deleting and inverting CBEs within a critical antibody heavy chain gene locus developmental control region and a loop extrusion chromatin-anchor at the downstream end of this locus, we reveal how these elements developmentally contribute to generation of diverse antibody repertoires.

7.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098343

RESUMO

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Anticorpos/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , DNA de Cadeia Simples , Mutação , Evolução Molecular , Regiões Determinantes de Complementaridade/genética , Motivos de Nucleotídeos
8.
Proc Natl Acad Sci U S A ; 120(1): e2217883120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574685

RESUMO

Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vacinas , Camundongos , Humanos , Animais , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , HIV-1/genética , Anticorpos Anti-HIV , DNA Nucleotidilexotransferase , Regiões Determinantes de Complementaridade/genética , Infecções por HIV/prevenção & controle
9.
Nature ; 612(7938): 156-161, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228656

RESUMO

The B cell antigen receptor (BCR) is composed of a membrane-bound class M, D, G, E or A immunoglobulin for antigen recognition1-3 and a disulfide-linked Igα (also known as CD79A) and Igß (also known as CD79B) heterodimer (Igα/ß) that functions as the signalling entity through intracellular immunoreceptor tyrosine-based activation motifs (ITAMs)4,5. The organizing principle of the BCR remains unknown. Here we report cryo-electron microscopy structures of mouse full-length IgM BCR and its Fab-deleted form. At the ectodomain (ECD), the Igα/ß heterodimer mainly uses Igα to associate with Cµ3 and Cµ4 domains of one heavy chain (µHC) while leaving the other heavy chain (µHC') unbound. The transmembrane domain (TMD) helices of µHC and µHC' interact with those of the Igα/ß heterodimer to form a tight four-helix bundle. The asymmetry at the TMD prevents the recruitment of two Igα/ß heterodimers. Notably, the connecting peptide between the ECD and TMD of µHC intervenes in between those of Igα and Igß to guide TMD assembly through charge complementarity. Weaker but distinct density for the Igß ITAM nestles next to the TMD, suggesting potential autoinhibition of ITAM phosphorylation. Interfacial analyses suggest that all BCR classes utilize a general organizational architecture. Our studies provide a structural platform for understanding B cell signalling and designing rational therapies against BCR-mediated diseases.


Assuntos
Microscopia Crioeletrônica , Receptores de Antígenos de Linfócitos B , Animais , Camundongos , Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/biossíntese , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/ultraestrutura , Transdução de Sinais , Fragmentos Fab das Imunoglobulinas , Domínios Proteicos , Fosforilação
10.
Sci Immunol ; 7(76): eadd5446, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35951767

RESUMO

SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , Fusão de Membrana , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Receptores de Antígenos de Linfócitos B
11.
Front Immunol ; 13: 870933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651614

RESUMO

Immunoglobulin class switch recombination (CSR) plays an important role in humoral imm\une responses by changing the effector functions of antibodies. CSR occurs between highly repetitive switch (S) sequences located upstream of immunoglobulin constant gene exons. Switch sequences differ in size, the nature of their repeats, and the density of the motifs targeted by the activation-induced cytidine deaminase (AID), the enzyme that initiates CSR. CSR involves double-strand breaks (DSBs) at the universal Sµ donor region and one of the acceptor S regions. The DSBs ends are fused by the classical non-homologous end-joining (C-NHEJ) and the alternative-NHEJ (A-NHEJ) pathways. Of the two pathways, the A-NHEJ displays a bias towards longer junctional micro-homologies (MHs). The Sµ region displays features that distinguish it from other S regions, but the molecular basis of Sµ specificity is ill-understood. We used a mouse line in which the downstream Sγ3 region was put under the control of the Eµ enhancer, which regulates Sµ, and analyzed its recombination activity by CSR-HTGTS. Here, we show that provision of Eµ enhancer to Sγ3 is sufficient to confer the recombinational features of Sµ to Sγ3, including efficient AID recruitment, enhanced internal deletions and robust donor function in CSR. Moreover, junctions involving Sγ3 display a bias for longer MH irrespective of sequence homology with switch acceptor sites. The data suggest that the propensity for increased MH usage is an intrinsic property of Sγ3 sequence, and that the tandem repeats of the donor site influence the choice of the A-NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades , Switching de Imunoglobulina , Animais , Rearranjo Gênico , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Camundongos , Sequências de Repetição em Tandem
12.
Nat Commun ; 13(1): 3707, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764636

RESUMO

SHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação V(D)J , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina/genética , Recombinação V(D)J/genética
13.
EMBO J ; 41(11): e109324, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471583

RESUMO

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Assuntos
Citidina Desaminase , Switching de Imunoglobulina , Linfócitos B , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/metabolismo , Humanos , Switching de Imunoglobulina/genética
14.
Cell Rep ; 38(11): 110514, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294883

RESUMO

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated. Here, we show that mRNAs can encode antigenic Env trimers on ferritin nanoparticles that initiate bnAb precursor B cell expansion and induce serum autologous tier 2 neutralizing activity in bnAb precursor VH + VL knock-in mice. Next-generation sequencing demonstrates acquisition of critical mutations, and monoclonal antibodies that neutralize heterologous HIV-1 isolates are isolated. Thus, mRNA-LNP can encode complex immunogens and may be of use in design of germline-targeting and sequential boosting immunogens for HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , COVID-19 , HIV-1 , Nanopartículas , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Epitopos , Ferritinas/genética , Anticorpos Anti-HIV , Humanos , Lipossomos , Camundongos , RNA Mensageiro , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
15.
Nat Rev Immunol ; 22(9): 550-566, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35169260

RESUMO

Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.


Assuntos
Região Variável de Imunoglobulina , Recombinação V(D)J , Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética
16.
Nature ; 599(7884): 308-314, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671165

RESUMO

Extrachromosomal circular DNA elements (eccDNAs) have been described in the literature for several decades, and are known for their broad existence across different species1,2. However, their biogenesis and functions are largely unknown. By developing a new circular DNA enrichment method, here we purified and sequenced full-length eccDNAs with Nanopore sequencing. We found that eccDNAs map across the entire genome in a close to random manner, suggesting a biogenesis mechanism of random ligation of genomic DNA fragments. Consistent with this idea, we found that apoptosis inducers can increase eccDNA generation, which is dependent on apoptotic DNA fragmentation followed by ligation by DNA ligase 3. Importantly, we demonstrated that eccDNAs can function as potent innate immunostimulants in a manner that is independent of eccDNA sequence but dependent on eccDNA circularity and the cytosolic DNA sensor Sting. Collectively, our study not only revealed the origin, biogenesis and immunostimulant function of eccDNAs but also uncovered their sensing pathway and potential clinical implications in immune response.


Assuntos
Apoptose , Fragmentação do DNA , DNA Circular/biossíntese , DNA Circular/imunologia , Imunidade Inata , Animais , Células Cultivadas , Mapeamento Cromossômico , DNA Ligase Dependente de ATP/metabolismo , DNA Circular/genética , DNA Circular/isolamento & purificação , Endodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Genoma/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
17.
Cell Rep ; 36(10): 109666, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496254

RESUMO

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Axônios/metabolismo , Quebras de DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , DNA Topoisomerases Tipo I/efeitos dos fármacos , Expressão Gênica/fisiologia , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Nervo Isquiático/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34006647

RESUMO

Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Autoantígeno Ku/genética , Células Precursoras de Linfócitos B/metabolismo , Recombinação V(D)J , Animais , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Precursoras de Linfócitos B/citologia
19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658386

RESUMO

V(D)J recombination generates mature B cells that express huge repertoires of primary antibodies as diverse immunoglobulin (Ig) heavy chain (IgH) and light chain (IgL) of their B cell antigen receptors (BCRs). Cognate antigen binding to BCR variable region domains activates B cells into the germinal center (GC) reaction in which somatic hypermutation (SHM) modifies primary variable region-encoding sequences, with subsequent selection for mutations that improve antigen-binding affinity, ultimately leading to antibody affinity maturation. Based on these principles, we developed a humanized mouse model approach to diversify an anti-PD1 therapeutic antibody and allow isolation of variants with novel properties. In this approach, component Ig gene segments of the anti-PD1 antibody underwent de novo V(D)J recombination to diversify the anti-PD1 antibody in the primary antibody repertoire in the mouse models. Immunization of these mouse models further modified the anti-PD1 antibodies through SHM. Known anti-PD1 antibodies block interaction of PD1 with its ligands to alleviate PD1-mediated T cell suppression, thereby boosting antitumor T cell responses. By diversifying one such anti-PD1 antibody, we derived many anti-PD1 antibodies, including anti-PD1 antibodies with the opposite activity of enhancing PD1/ligand interaction. Such antibodies theoretically might suppress deleterious T cell activities in autoimmune diseases. The approach we describe should be generally applicable for diversifying other therapeutic antibodies.


Assuntos
Afinidade de Anticorpos/genética , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Receptores de Antígenos de Linfócitos B , Hipermutação Somática de Imunoglobulina , Recombinação V(D)J/imunologia , Animais , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia
20.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33441485

RESUMO

IgH class switch recombination (CSR) replaces Cµ constant region (CH) exons with one of six downstream CHs by joining transcription-targeted double-strand breaks (DSBs) in the Cµ switch (S) region to DSBs in a downstream S region. Chromatin loop extrusion underlies fundamental CSR mechanisms including 3'IgH regulatory region (3'IgHRR)-mediated S region transcription, CSR center formation, and deletional CSR joining. There are 10 consecutive CTCF-binding elements (CBEs) downstream of the 3'IgHRR, termed the "3'IgH CBEs." Prior studies showed that deletion of eight 3'IgH CBEs did not detectably affect CSR. Here, we report that deletion of all 3'IgH CBEs impacts, to varying degrees, germline transcription and CSR of upstream S regions, except that of Sγ1. Moreover, deletion of all 3'IgH CBEs rendered the 6-kb region just downstream highly transcribed and caused sequences within to be aligned with Sµ, broken, and joined to form aberrant CSR rearrangements. These findings implicate the 3'IgH CBEs as critical insulators for focusing loop extrusion-mediated 3'IgHRR transcriptional and CSR activities on upstream CH locus targets.


Assuntos
Fator de Ligação a CCCTC/genética , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Transcrição Gênica/imunologia , Animais , Anticorpos/genética , Anticorpos/imunologia , Linfócitos B/imunologia , Cromatina/genética , Cromatina/imunologia , Mutação em Linhagem Germinativa/genética , Switching de Imunoglobulina/imunologia , Camundongos , Sequências Reguladoras de Ácido Nucleico/genética , Sequências Reguladoras de Ácido Nucleico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...