Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767500

RESUMO

Pharmacological studies aimed at the development of newly synthesized drugs directed against ion channels (as well as genetic studies of ion channel mutations) involve the development and use of transfected cells. However, the identification of the best clone, in terms of transfection efficiency, is often a time consuming procedure when performed through traditional methods such as manual patch-clamp. On the other hand, the use of other faster techniques, such as for example the IF, are not informative on the effective biological functionality of the transfected ion channel(s). In the present work, we used the high throughput automated ion channel reader (ICR) technology (ICR8000 Aurora Biomed Inc.) that combine atomic absorption spectroscopy with a patented microsampling process to accurately measure ion flux in cell-based screening assays. This technology indeed helped us to evaluate the transfection efficiency of hERG1 and hKv1.3 channels respectively on the HEK-293 and CHO cellular models. Moreover, as proof of the validity of this innovative method, we have corroborated these data with the functional characterization of the potassium currents carried out by the same clones through patch-clamp recordings. The results obtained in our study are promising and represent a valid methodological strategy to screen a large number of clones simultaneously and to pharmacologically evaluate their functionality within an extremely faster timeframe.

2.
Eur J Med Chem ; 259: 115561, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37454520

RESUMO

Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.


Assuntos
Imunossupressores , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Tiofenos , Animais , Mamíferos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Relação Estrutura-Atividade , Linfócitos T , Tiofenos/química , Tiofenos/farmacologia , Imunossupressores/química
3.
Cell Rep ; 41(5): 111580, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323248

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS.


Assuntos
Ataxia Cerebelar , Camundongos , Animais , Integrinas/genética , Proteínas de Choque Térmico/metabolismo , Ataxia/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...