Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17009, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813897

RESUMO

The increasing demand for renewable and environmentally friendly energy sources is a top priority for many countries around the world. It is obvious that renewable solar energy will help to meet most of the energy demand in the coming years. A solar pond is a huge Salt artificial Lake that serves as a solar energy collection system. However, site selection is a critical factor that affects the effectiveness and lifetime of a solar pond. Here, we present an innovative methodology for site selection based on three environmental factors, including direct solar irradiance (DNI), temperature, and wind speed. Our approach uses Python programming and clustering analysis with several libraries, including Pandas, Geopandas, Rasterio, Osgeo, and Sklearn, to analyse and process data collected over a 30-year period from NASA power. This method was applied to the geographic boundaries of Egypt, but the methods can be applied to any spatial context if the same dataset is available. The results show that Egypt has a potential land area of 500 km2 suitable for solar ponds construction along the border with Sudan throughout the year, including 2000 km2 in winter (between January and March), 800 km2 in spring (between April and June), 900 km2 in summer (between July and September), and the largest area of 3700 km2 (between October and December), most of which is located in the south of the Eastern Desert and around the Nile River. Notably, the northwestern region, close to the Mediterranean Sea on the border with Libya, exhibits suitability for solar pond development, with consistent performance throughout the year. Our results provide an efficient way for GIS and data processing and could be useful for implementing new software to find the best location for solar ponds development. This could be beneficial for those interested in investing in renewable energy and using solar ponds as an efficient water treatment plant.

2.
Sci Rep ; 13(1): 16861, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803033

RESUMO

Ammonium is an essential component of the nitrogen cycle, which is essential for nitrogen cycling in ecosystems. On the other hand, ammonium pollution in water poses a great threat to the ecosystem and human health. Accurate and timely determination of ammonium content is of great importance for environmental management and ensuring the safety of water supply. Here we report a highly sensitive electrochemical sensor for ammonium in water samples. The modified electrode is based on the incorporation of silver nitrate (AgNO3) into a carbon paste embedded with 1-aminoanthraquinone and supported by multi-walled carbon nanotubes, which are commercially available. A potential of 0.75 V is applied to the modified electrode, followed by activation in hydrochloric acid. The modified electrode was used for square wave voltammetry of ammonium in water in the potential range of - 0.4-0.2 V. The performance of ammonium analysis was determined in terms of square wave frequency, square wave amplitude and concentration of electrolyte solution (sodium sulphate). The calculation of the surface area according to the Randles-Sevcik equation resulted in the largest surface area for the Ag/pAAQ/MWCNTs/CPE. The modified electrode exhibited a linear range of 5-100 µM NH4+ in 0.1 M Na2SO4 with a detection limit of 0.03 µM NH4+ (3σ). In addition, the modified electrode showed high precision with an RSD value of 9.93% for 10 repeated measurements. No interfering effect was observed at twofold and tenfold additive concentrations of foreign ions. Good recoveries were obtained in the analysis of tap and mineral water after spiking with a concentration of ammonium ions.

3.
Sci Rep ; 13(1): 13634, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604877

RESUMO

Orthophosphate is an essential macronutrient in natural water that controls primary production and strongly influences the global ocean carbon cycle. Electrochemical determination of orthophosphate is highly recommended because electrochemistry provides the simplest means of determination. Here the determination of orthophosphate based on the formation of a phosphomolybdate complex is reported. Mixed-valent molybdenum oxide (MoxOy) was prepared by cyclic voltammetry on poly-1,2-diaminoanthraquinone (1,2-DAAQ), which was performed by cyclic voltammetry on the surface of a glassy carbon electrode under pre-optimized conditions for the thickness of the modified electrode layers. The proposed modified electrode was used for square-wave voltammetry of orthophosphate ions under pre-optimized square-wave parameters (i.e., frequency and amplitude) in strongly acidic medium (pH < 1). The linear range was 0.05-4 µM with a limit of quantification (LOD) of 0.0093 µM with no effect on two peaks due to cross interference from silicate. Furthermore, MoxOy/PDAAQ shows good reproducibility with a relative standard deviation (RSD) of 2.17% for the peak at 0.035 V and 3.56% for the peak at 0.2 V. Real seawater samples were also analyzed for PO43- analysis by UV spectrophotometry and the results were compared with the measurement results of our proposed electrode, with good recoveries obtained.

4.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850720

RESUMO

Autonomous on-site monitoring of orthophosphate (PO43-), an important nutrient for primary production in natural waters, is urgently needed. Here, we report on the development and validation of an on-site autonomous electrochemical analyzer for PO43- in seawater. The approach is based on the use of flow injection analysis in conjunction with a dual electrochemical cell (i.e., a bi-potentiostat detector (FIA-DECD) that uses two working electrodes sharing the same reference and counter electrode. The two working electrodes are used (molybdate/carbon paste electrode (CPE) and CPE) to correct for matrix effects. Optimization of squarewave voltammetry parameters (including step potential, amplitude, and frequency) was undertaken to enhance analytical sensitivity. Possible interferences from non-ionic surfactants and humic acid were investigated. The limit of quantification in artificial seawater (30 g/L NaCl, pH 0.8) was 0.014 µM for a linear concentration range of 0.02-3 µM. The system used a Python script for operation and data processing. The analyzer was tested for ship-board PO43- determination during a four-day research cruise in the North Sea. The analyzer successfully measured 34 samples and achieved a good correlation (Pearson' R = 0.91) with discretely collected water samples analyzed using a laboratory-based colorimetric reference analyzer.

5.
Sensors (Basel) ; 22(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591168

RESUMO

Accurate, on-site determinations of macronutrients (phosphate (PO43-), nitrate (NO3-), and silicic acid (H4SiO4)) in seawater in real time are essential to obtain information on their distribution, flux, and role in marine biogeochemical cycles. The development of robust sensors for long-term on-site analysis of macronutrients in seawater is a great challenge. Here, we present improvements of a commercial automated sensor for nutrients (including PO43-, H4SiO4, and NO2- plus NO3-), suitable for a variety of aquatic environments. The sensor uses the phosphomolybdate blue method for PO43-, the silicomolybdate blue method for H4SiO4 and the Griess reagent method for NO2-, modified with vanadium chloride as reducing agent for the determination of NO3-. Here, we report the optimization of analytical conditions, including reaction time for PO43- analysis, complexation time for H4SiO4 analysis, and analyte to reagent ratio for NO3- analysis. The instrument showed wide linear ranges, from 0.2 to 100 µM PO43-, between 0.2 and 100 µM H4SiO4, from 0.5 to 100 µM NO3-, and between 0.4 and 100 µM NO2-, with detection limits of 0.18 µM, 0.15 µM, 0.45 µM, and 0.35 µM for PO43-, H4SiO4, NO3-, and NO2-, respectively. The analyzer showed good precision with a relative standard deviation of 8.9% for PO43-, 4.8% for H4SiO4, and 7.4% for NO2- plus NO3- during routine analysis of certified reference materials (KANSO, Japan). The analyzer performed well in the field during a 46-day deployment on a pontoon in the Kiel Fjord (located in the southwestern Baltic Sea), with a water supply from a depth of 1 m. The system successfully collected 443, 440, and 409 on-site data points for PO43-, Σ(NO3- + NO2-), and H4SiO4, respectively. Time series data agreed well with data obtained from the analysis of discretely collected samples using standard reference laboratory procedures and showed clear correlations with key hydrographic parameters throughout the deployment period.


Assuntos
Nitratos , Nitritos , Nitritos/análise , Dióxido de Nitrogênio , Fosfatos , Água do Mar , Ácido Silícico
6.
RSC Adv ; 12(8): 4988-5000, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425500

RESUMO

Selenite (Se4+), a significant source of water pollution above the permissible limits, is considered a valuable metal by environmentalists. In this study, we described a novel electrochemical sensor that utilized a carbon paste electrode (CPE) that was modified using multiwall carbon nanotubes (MWCNTs) and poly(1-aminoanthraquinone) (p-AAQ) for finding Se4+ in water samples. Electrochemical quantification of Se4+ depends on the formation of a selective complex (piaselenol) with p-AAQ. In this work, we prepared a CPE modified by physical embedding of MWCNTs and 1-aminoanthraquione (AAQ), while the polymer film was formed by anodic polymerization of AAQ by applying a constant potential of 0.75 V in 0.1 M HCl for 20 s followed by cyclic voltammetry (CV) from -0.2 to 1.4 V for 20 cycles. The modified CPE was used for differential pulse voltammetry (DPV) of Se4+ in 0.1 M H2SO4 from 0 to 0.4 V with a characteristic peak at 0.27 V. Further, the proposed sensor was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy (EIS). The analytical conditions regarding the electrode performance and voltammetric measurements were optimized, with the accumulation time and potential, supporting electrolyte, differential-pulse period/time, and amplitude. The EIS results indicated that the p-AAQ/MWCNTs-modified CPE sensor (p-AAQ/MWCNTs/CPE) that also exhibited low charge-transfer resistance (R ct) toward the anodic stripping of Se4+, exhibited good analytical performance toward different concentrations of Se4+ in a linear range of 5-50 µg L-1 Se4+ with a limit of determination (LOD) of 1.5 µg L-1 (3σ). Furthermore, differential-pulse voltammetry was employed to determine different concentrations of Se4+ in a linear range of 1-50 µg L-1 Se4+, and an LOD value of 0.289 µg L-1 was obtained. The proposed sensor demonstrated good precision (relative standard deviation = 4.02%) at a Se4+ concentration of 5 µg L-1. Moreover, the proposed sensor was applied to analyze Se4+ in wastewater samples that were spiked with Se, and it achieved good recovery values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...