Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cells ; 11(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010606

RESUMO

Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell-matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin ß1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein-protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.


Assuntos
Membrana Epirretiniana , Membrana Epirretiniana/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteômica/métodos , Ciência Translacional Biomédica , Corpo Vítreo/metabolismo
3.
Invest Ophthalmol Vis Sci ; 62(15): 32, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967853

RESUMO

Purpose: To investigate light-induced modifications of the smooth endoplasmic reticulum of the RPE in primates. Methods: Eyes of three terminally anesthetized Rhesus monkeys were exposed to 5000 lux for 10 minutes or kept in the dark. Transmission electron microscopy and electron tomography were conducted on small fragments of retina sampled from different regions of the retina. Results: RPE cells smooth endoplasmic reticulum shows a previously unknown arrangement characterized by an interlaced compartmental pattern (ICP). Electron tomograms and 3D-modelling demonstrated that the smooth endoplasmic reticulum with an ICP (ICPSER) consisted of four parallel, independent and interwoven networks of tubules arranged as interconnected coiled coils. Its architecture realized a compact labyrinthine structure of tightly packed tubules stabilized by intertubular filamentous tethers. On average, the ICPSER is present in about 14.6% of RPE cells. Although ICPSER was preferentially found in cells located in the peripheral and in the para/perifoveal retina, ICPSER cells significantly increased in number upon light exposure in the para/perifovea and in the fovea. Conclusions: An ICPSER is apparently a unique feature to primate RPE. Its rapid appearance in the area centralis of the retina upon light exposure suggests a function related to the foveate structure of primate retina or to the diurnal habits of animals that may require additional protection from photo-oxidation or enhanced requests of visual pigments regeneration.


Assuntos
Retículo Endoplasmático Liso/metabolismo , Luz , Epitélio Pigmentado da Retina/efeitos da radiação , Animais , Retículo Endoplasmático Liso/ultraestrutura , Imageamento Tridimensional , Macaca mulatta , Masculino , Microscopia Eletrônica de Transmissão , Epitélio Pigmentado da Retina/metabolismo
4.
Graefes Arch Clin Exp Ophthalmol ; 259(9): 2559-2571, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33760980

RESUMO

PURPOSE: To study the composition of the internal limiting membrane (ILM) of the retina, the extracellular matrix (ECM) of idiopathic epiretinal membranes (iERMs), and the relationships occurring between the two membranes. METHODS: Forty-six iERMs, 24 of them associated with the ILM, were collected and included in this study. The investigation has been carried out by immunofluorescence and confocal microscopy on glutaraldehyde- and osmium-fixed epon-embedded samples and on frozen samples. Sections were double or triple labelled with antibodies against vimentin; collagens I, III, IV, α5(IV), and VI; laminin 1 + 2; laminin α2-, α4-, α5-, ß1-, ß2-, ß3-, γ1-, and γ2-chains; entactin; and fibronectin. RESULTS: iERM thickness was not uniform. Almost 14% of iERMs showed thickenings due to folding of their ECM component under the cell layer. The vitreal side of iERMs was often shorter than the attached ILM. In this case, the ILM resulted folded under the iERM. ILMs contained laminin 111; laminin α2-, α5-, ß1-, ß2-, and γ1-chains; entactin; collagens I; α5(IV); [α1(IV)]2α2(IV); and VI. Laminins, entactin, and α5(IV) were gathered on the retinal half of the ILM, whereas collagens [α1(IV)]2α2(IV) and I were restricted to the vitreal side. Collagen VI was detected on both sides of the ILM. iERMs expressed laminin 111, collagens III, [α1(IV)]2α2(IV) and VI, entactin, and fibronectin. Entactin co-localized with laminins and collagen IV. CONCLUSIONS: Analysis of laminins and collagen chain expression indicates that ILM contains laminin 111 (former laminin 1), laminin 521 (former laminin 11), laminin 211 (former laminin 2), collagen [α1(IV)]2α2(IV), and collagen α3(IV)α4(IV)α5. In contrast, iERMs express only collagen [α1(IV)]2α2(IV) and laminin 111. In addition, both iERMs and ILMs contain entactin. The presence of three major constituents of the basement membranes co-localized together in iERMs is suggestive for a deranged process of basement membrane formation which fails to assemble properly. In view of the many interactions occurring among its proteins, the ECM of either the iERMs or the ILMs can account for their reciprocal adhesiveness. In addition, the peculiar deposition of the ECM observed in some samples of iERM is suggestive for its involvement in the formation of macular puckers.


Assuntos
Membrana Epirretiniana , Membrana Basal , Colágeno Tipo IV , Membrana Epirretiniana/diagnóstico , Matriz Extracelular , Humanos , Laminina , Retina
5.
Microbiome ; 8(1): 140, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004079

RESUMO

BACKGROUND: The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems; however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients altered the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. RESULTS: Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production (Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and disorders of the CNS (Prevotellaceae and Ruminococcaceae) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. CONCLUSION: These results demonstrate that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly. Video Abstract.


Assuntos
Envelhecimento/fisiologia , Transplante de Microbiota Fecal , Hipocampo/fisiologia , Memória/fisiologia , Plasticidade Neuronal , Aprendizagem Espacial/fisiologia , Transmissão Sináptica , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida
6.
Invest Ophthalmol Vis Sci ; 61(8): 34, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716502

RESUMO

Purpose: This work was aimed to further characterize cells of idiopathic epiretinal membranes (iERMs). We wanted to determine the contribution of 90-kDa heat shock protein (HSP90) to sustain the transforming growth factor-ß (TGF-ß)-mediated signal transduction pathway in iERM. Methods: Immunofluorescence and confocal microscopy were carried out on deplasticized sections from 36 epiretinal membranes processed for electron microscopy and on frozen sections from five additional samples with antibodies against α-smooth muscle actin (αSMA), vimentin, glial fibrillary acidic protein (GFAP), SMAD2, HSP90α, type-II TGF-ß1 receptor (TßRII), type-I collagen, and type-IV collagen. In addition, Müller MIO-M1 cells were transfected with HSP90 and challenged with TGF-ß1. Results: Double and triple labeling experiments showed that a variable number of TßRII+ cells were present in 94.1% of tested iERMs and they were mostly GFAP-/αSMA+/vimentin+/HSP90α+. In almost half of the cases these cells contained type-I collagen, suggesting their involvement in matrix deposition. HSP90 overexpressing MIO-M1 cells challenged with TGF-ß1 showed increased levels of TßRII, SMAD2, SMAD3, and phosphor-SMAD2. Nuclear SMAD2 staining could be observed in HSP90α+ cells on frozen sections of iERMs. Conclusions: Cells in iERMs that express TßRII are also HSP90α+ and show the antigenic profile of myofibroblast-like cells as they are GFAP-/αSMA+/vimentin+. HSP90α-overexpressing MIO-M1 cells challenged with TGF-ß1 showed an increased activation of the SMAD pathway implying that HSP90α might play a role in sustaining the TGF-ß1-induced fibrotic response of iERM cells.


Assuntos
Células Ependimogliais/metabolismo , Membrana Epirretiniana , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Ependimogliais/patologia , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Fibrose/metabolismo , Humanos , Transdução de Sinais
7.
J Histochem Cytochem ; 68(2): 149-162, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31858878

RESUMO

Idiopathic epiretinal membranes are sheets of tissue that develop in the vitreoretinal interface. They are formed by cells and extracellular matrix, and they are considered the expression of a fibrotic disorder of the eye. Confocal and immunoelectron microscopy of the extracellular matrix of excised membranes, revealed high contents of type IV collagen. It was distributed within epiretinal membranes in basement membrane-like structures associated with cells and in interstitial deposits. In both cases, type IV collagen was always associated with type I collagen. Col IV was also coupled with Col VI and laminin. At high magnification, type IV collagen immunolabelling was associated with interstitial deposits and showed a reticular appearance due to the intersection of beaded microfilaments. The microfilaments are about 12 nm in diameter with interbead distance of 30-40 nm. Cells of the epiretinal membranes showed intracellular lysosome-like bodies heavily labeled for type IV collagen suggesting an active role in membrane remodeling. Hence, type IV collagen is not necessarily always associated with basement membranes; the molecular interactions that it may develop when not incorporated in basement membranes are still unknown. It is conceivable, however, that they might have implications in the progression of epiretinal membranes and other fibrotic disorders.


Assuntos
Colágeno Tipo IV/metabolismo , Membrana Epirretiniana/metabolismo , Animais , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...