Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 56(7): 223, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060802

RESUMO

Trypanosomosis due to Trypanosoma evansi (surra) is one of the most important diseases with a significant impact on camel health and production. Trypanosoma-induced immunosuppression mechanisms, which are key factors of disease pathogenesis, have been characterized in several animal species. The present study investigated, therefore, the impact of trypanosomosis on the immunophenotype of blood leukocytes in camels. For this, the relative and absolute values of blood leukocyte populations, their expression pattern of cell surface molecules, and the numbers of the main lymphocyte subsets were compared between healthy camels and camels with clinical symptoms of chronic surra and serological evidence of exposure to Trypanosoma infection. Leukocytes were separated from the blood of healthy and diseased camels, labeled with fluorochrome-conjugated antibodies, and analyzed by flow cytometry. Compared to healthy camels, the leukogram of diseased camels was characterized by a slightly increased leukocyte count with moderate neutrophilia and monocytosis indicating a chronic inflammatory pattern that may reflect tissue injury due to the long-lasting inflammation. In addition, the analysis of lymphocyte subsets revealed a lower number and percentage of B cells in diseased than healthy camels. In vitro incubation of camel mononuclear cells with fluorochrome-labeled T. evansi revealed a higher capacity of camel B cells than T cells to bind the parasite in vitro. Furthermore, cell viability analysis of camel PBMC incubated in vitro with T. evansi whole parasites but not the purified antigens resulted in Trypanosoma-induced apoptosis and necrosis of camel B cells. Here we demonstrate an association between trypanosomosis in camels and reduced numbers of blood B cells. In vitro analysis supports a high potential of T. evansi to bind to camel B cells and induce their elimination by apoptosis and necrosis.


Assuntos
Linfócitos B , Camelus , Citometria de Fluxo , Trypanosoma , Tripanossomíase , Animais , Camelus/parasitologia , Trypanosoma/isolamento & purificação , Tripanossomíase/veterinária , Tripanossomíase/parasitologia , Tripanossomíase/sangue , Tripanossomíase/imunologia , Linfócitos B/imunologia , Citometria de Fluxo/veterinária , Masculino , Feminino , Morte Celular , Apoptose
2.
PeerJ ; 12: e17588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948224

RESUMO

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Assuntos
Antibacterianos , Antineoplásicos , Extratos Vegetais , Folhas de Planta , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Folhas de Planta/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Azadirachta/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Química Verde/métodos , Tamanho da Partícula , Linhagem Celular Tumoral
3.
Front Vet Sci ; 11: 1365319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746932

RESUMO

Dromedary camel is an important livestock species with special economic value in arid and semi-arid regions of the world. Given the limited data on detailed immune cell composition and cell marker expression in the dromedary camel lymph node tissue, the present study was undertaken to investigate the immune cell composition of bronchial and mesenteric lymph nodes from healthy dromedary camels using flow cytometry. In this study, we applied flow cytometry and multicolor immuno-fluorescence to phenotype the main populations of immune cells in the bronchial and mesenteric camel lymph nodes and compared them with separated peripheral blood mononuclear cells and granulocytes. We used antibodies to detect several cell surface molecules associated with camel T cells (CD4, WC1), B cells (MHCII, BAQ44A), monocytes/macrophages (CD172a, CD14, CD163), in addition to the pan-leukocyte marker CD45 and the cell adhesion molecules CD44 and CD18. Compared to blood mononuclear cells, camel lymph node cells contained a higher percentage of lymphoid cells with only a minor fraction of myeloid cells. In addition, the lower expression of CD44 and CD18 on lymph node lymphocytes compared to lymphocytes from peripheral blood indicates higher frequency of naïve lymphocytes in the lymph nodes. The frequency of CD4+ T cells, B cells and γδ T cells within camel lymph node lymphocytes compared to blood indicates a similar tissue distribution pattern of lymphocyte subsets in camel and bovine and supports previous reports on the similarity between the camel immune system and the immune system of other ruminants. Lymph node neutrophils were identified as CD45++ CD172a++, CD14+, MHCIIlow, BAQ44A+, CD44++, CD18++ cells. In conclusion, the present study is describing the employment of flow cytometric single-cell analysis and immunostaining for the analysis of the immune cell composition in the camel lymph node.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA