Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(13): 9057-9075, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37378639

RESUMO

There is concern for important adverse effects with use of second-generation antipsychotics in Parkinson's disease psychosis (PDP) and dementia-related psychosis. Pimavanserin is the only antipsychotic drug authorized for PDP and represents an inverse agonist of 5-HT2A receptors (5-HT2AR) lacking affinity for dopamine receptors. Therefore, the development of serotonin 5-HT2AR inverse agonists without dopaminergic activity represents a challenge for different neuropsychiatric disorders. Using ligand-based drug design, we discovered a novel structure of pimavanserin analogues (2, 3, and 4). In vitro competition receptor binding and functional G protein coupling assays demonstrated that compounds 2, 3, and 4 showed higher potency than pimavanserin as 5-HT2AR inverse agonists in the human brain cortex and recombinant cells. To assess the effect of molecular substituents for selectivity and inverse agonism at 5-HT2ARs, molecular docking and in silico predicted physicochemical parameters were performed. Docking studies were in agreement with in vitro screenings and the results resembled pimavanserin.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Humanos , Serotonina/uso terapêutico , Agonismo Inverso de Drogas , Simulação de Acoplamento Molecular , Receptor 5-HT2A de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transtornos Psicóticos/tratamento farmacológico , Agonistas do Receptor de Serotonina/uso terapêutico , Ureia/farmacologia , Antipsicóticos/uso terapêutico
2.
ACS Omega ; 8(15): 14144-14159, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091426

RESUMO

The aim of this study is to evaluate the efficacy of mesoporous silica nanospheres as an adsorbent to remove doxorubicin (DOX) from aqueous solution. The surface and structural properties of mesoporous silica nanospheres were investigated using BET, SEM, XRD, TEM, ζ potential, and point of zero charge analysis. To optimize DOX removal from aqueous solution, a Box-Behnken surface statistical design (BBD) with four times factors, four levels, and response surface modeling (RSM) was used. A high amount of adsorptivity from DOX (804.84 mg/g) was successfully done under the following conditions: mesoporous silica nanospheres dose = 0.02 g/25 mL; pH = 6; shaking speed = 200 rpm; and adsorption time = 100 min. The study of isotherms demonstrated how well the Langmuir equation and the experimental data matched. According to thermodynamic characteristics, the adsorption of DOX on mesoporous silica nanospheres was endothermic and spontaneous. The increase in solution temperature also aided in the removal of DOX. The kinetic study showed that the model suited the pseudo-second-order. The suggested adsorption method could recycle mesoporous silica nanospheres five times, with a modest reduction in its ability for adsorption. The most important feature of our adsorbent is that it can be recycled five times without losing its efficiency.

3.
ACS Omega ; 8(7): 6762-6777, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844599

RESUMO

In the present study, a nanocomposite adsorbent based on mesoporous silica nanotubes (MSNTs) loaded with 3-aminopropyltriethoxysilane (3-APTES@MSNTs) was synthesized. The nanocomposite was employed as an effective adsorbent for the adsorption of tetracycline (TC) antibiotics from aqueous media. It has an 848.80 mg/g maximal TC adsorption capability. The structure and properties of 3-APTES@MSNT nanoadsorbent were detected by TEM, XRD, SEM, FTIR, and N2 adsorption-desorption isotherms. The later analysis suggested that the 3-APTES@MSNT nanoadsorbent has abundant surface functional groups, effective pore size distribution, a larger pore volume, and a relatively higher surface area. Furthermore, the influence of key adsorption parameters, including ambient temperature, ionic strength, initial TC concentration, contact time, initial pH, coexisting ions, and adsorbent dosage, had also been investigated. The 3-APTES@MSNT nanoadsorbent's ability to adsorb the TC molecules was found to be more compatible with Langmuir isothermal and pseudo-second-order kinetic models. Moreover, research on temperature profiles pointed to the process' endothermic character. In combination with the characterization findings, it was logically concluded that the 3-APTES@MSNT nanoadsorbent's primary adsorption processes involved interaction, electrostatic interaction, hydrogen bonding interaction, and the pore-fling effect. The synthesized 3-APTES@MSNT nanoadsorbent has an interestingly high recyclability of >84.6 percent up to the fifth cycle. The 3-APTES@MSNT nanoadsorbent, therefore, showed promise for TC removal and environmental cleanup.

4.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296719

RESUMO

Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples. The chemical modification of A*PEI triples the sorption capacity for Sr(II) at pH 4 with a removal rate of up to 7% and 58% for A*PEI and SA*PEI, respectively (with SD: 0.67 g L-1). FTIR shows the strong contribution of sulfonate groups for the functionalized sorbent (in addition to amine and carboxylic groups from the support). The sorption is endothermic (increase in sorption with temperature). The sulfonation improves thermal stability and slightly enhances textural properties. This may explain the fast kinetics (which are controlled by the pseudo-first-order rate equation). The sulfonated sorbent shows a remarkable preference for Sr(II) over competitor mono-, di-, and tri-valent metal cations. Sorption properties are weakly influenced by the excess of NaCl; this can explain the outstanding sorption properties in the treatment of seawater samples. In addition, the sulfonated sorbent shows excellent stability at recycling (for at least 5 cycles), with a loss in capacity of around 2.2%. These preliminary results show the remarkable efficiency of the sorbent for Sr(II) removal from complex solutions (this could open perspectives for the treatment of contaminated seawater samples).


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Cloreto de Sódio , Água do Mar , Água , Cinética , Estrôncio , Ácidos Sulfônicos , Aminas , Concentração de Íons de Hidrogênio
5.
Toxics ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36136455

RESUMO

The development of new materials based on biopolymers (as renewable resources) is substantial for environmental challenges in the heavy metal and radionuclide ions removal contaminations. Functionalization of chitosan with sulfonic groups was achieved for improving the uranium sorption, not only from slightly acidic leachate, but also for the underground water. The prepared hydrogel based on chitosan was characterized by series of analysis tools for structure elucidation as FTIR spectroscopy, textural properties using nitrogen adsorption method, pHPZC (by pH-drift method), thermogravimetric analysis (TGA), SEM, and SEM-EDX analyses. The sorption was performed toward uranium (VI) ions for adjustment of sorption performances. The optimum sorption was performed at pH 4 (prior to the precipitation pH). The total sorption was achieved within 25 min (relatively fast kinetics) and was fitted by pseudo-first order rate equation (PFORE) and resistance to intraparticle diffusion equation (RIDE). The maximum sorption capacity was around 1.5 mmol U g-1. The sorption isotherms were fitted by Langmuir and Sips equations. Desorption was achieved using 0.3 M HCl solution and the complete desorption was performed in around 15 min of contact. The sorption desorption cycles are relatively stable during 5 cycles with limit decreasing in sorption and desorption properties (around 3 ± 0.2% and 99.8 ± 0.1%, respectively). The sorbent was used for removal of U from acid leachate solution in mining area. The sorbent showed a highly performance for U(VI) removal, which was considered as a tool material for radionuclides removing from aquatic medium.

6.
Materials (Basel) ; 15(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806800

RESUMO

Modified chitosan has been widely used for heavy metals removal during the last few decades. In this research, the study was focused on the effect of modified chitosan particles after grafting with heterocyclic constituent for enhancing the sorption of Cr(VI) ions. Chitosan was functionalized by 2-thioxodihydropyrimidine-4,6(1H,5H)-dione, in which the synthesized composite considered as a nanoscale size with average 5-7 nm. This explains the fast kinetics of sorption with large surface area. The prepared sorbent was characterized by Fourier-transform infrared (FTIR), elemental analysis (EA), Brunauer-Emmett-Teller (BET surface area) theory, thermogravimetric analysis (TGA), mass spectroscopy, and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses. The experimental part of this work involved the application of the synthesized sorbent for the removal of Cr(VI) ions from highly contaminated tannery effluents that are characterized by a high concentration toward chromate ions with other associated toxic elements, i.e., Pb(II) and Cd (II) ions, which underscore the importance of this treatment. Under the selected conditions (K2Cr2O7 salt, Co: 100 mg L-1 and pH: 4), the sorption diagram shows high Cr(VI) sorption and fast uptake kinetics. The sorption was enhanced by functionalization to 5.7 mmol Cr g-1 as well as fast uptake kinetics; 30 min is sufficient for total sorption compared with 1.97 mmol Cr g-1 and 60 min for the non-grafted sorbent. The Langmuir and Sips equations were fitted for the sorption isotherms, while the pseudo-first order rate equation (PFORE) was fitted for the uptake kinetics.

7.
Philos Trans A Math Phys Eng Sci ; 374(2060)2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26712643

RESUMO

Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...