Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(2): 360-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37850370

RESUMO

Wound healing is a complex process and one of the major therapeutic and economic subjects in the pharmaceutical area. In recent years, the fabrication of nano-sized wound dressing models has attracted great attention for tissue regeneration. Plant extracts loaded nanoparticles are environmentally friendly and non-toxic and the release of the bioactive substance will be controlled to the wound area. This study aims to fabricate wound dressing models that contain bioactive components for tissue regeneration. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extracts loaded nanoliposomes were prepared, characterized, and embedded in nanofiber structures. The effectiveness of wound dressing models for tissue regeneration was evaluated by in vitro and in vivo studies. It was observed that all wound dressing models positively affect the cell viability of human dermal fibroblast cells. It was determined that plant extracts loaded nanoparticles embedded in nanofibers increased in cell viability than nanoparticles that were non-embedded in nanofiber structures. Histological analysis showed that plant extract-loaded nanoliposomes embedded in chitosan/PCL nanofibers were used for tissue regeneration. The most effective nanofibers were determined as Wd-ClNL nanofibers. RESEARCH HIGHLIGHTS: Hypericum perforatum L. and Cistus laurifolius L. were prepared by modified ultrasonic extraction method. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extract-loaded nanoliposomes were prepared, and characterized. They were embedded in chitosan/polycaprolactone nanofiber. Effects of the wound dressing model were analyzed by in vitro and in vivo assays for tissue regeneration.


Assuntos
Quitosana , Nanofibras , Poliésteres , Humanos , Quitosana/química , Nanofibras/química , Cicatrização , Extratos Vegetais/farmacologia , Bandagens , Antibacterianos/farmacologia
2.
Microsc Res Tech ; 86(10): 1309-1321, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36929665

RESUMO

The present study investigated that chitosan production of Rhizopus oryzae NRRL 1526 and Aspergillus niger ATCC 16404. Fungal chitosans were characterized by scanning electron microscopy (SEM)-energy dispersive X-ray analysis, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter and deacetylation degrees of fungal chitosans were determined. The percentage yield of Ro-chitosan and An-chitosan were determined as 18.6% and 12.5%, respectively. According to percentage of chitosan yield and the results of the characterization studies, chitosan that obtained from Rhizopus oryzae NRRL 1526 was selected for subsequent studies. Cytotoxicity of chitosan obtained from Rhizopus oryzae NRRL 1526 was determined by MTT assay on human dermal fibroblast cell line. Acording to results of the cytotoxicity test fungal chitosan was nontoxic on cells. The high cell viability was observed 375 µg/mL concentration at 24th, 48th h periods and at the 187.5 µg/ml 72nd h periods on cells. The fungal chitosan obtained from Rhizopus oryzae NRRL 1526 was used to fabrication of electrospun nanofibers. Fungal chitosan based polymer solutions were prepared by adding different substances and different electrostatic spinning parameters were used to obtain most suitable nanofiber structure. Characterization studies of nanofibers were carried out by SEM, FTIR and X-ray diffraction. The most suitable nanofiber structure was determined as F4 formula. The nanofiber structure was evaluated to be thin, bead-free, uniform, flexible and easily remove from surface and taking the shape of the area. After the characterization analysis of fungal chitosan it was determined that the chitosan, which obtained from Rhizopus oryzae NRRL 1526 is actually chitosan polymer and this polymer is usable for pharmaceutical areas and biotechnological applications. The electrospun nanofiber that blends fungal chitosan and PCL polymers were fabricated successfully and that it can be used as fabrication wound dressing models. RESEARCH HIGHLIGHTS: Extraction of chitosan from Rhizopus oryzae NRRL 1526 and Aspergillus niger ATCC 16404 and characterization scanning electron microscopy-energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, differential scanning calorimeter. Fabrication and characterization of the fungal chitosan/PCL electrospun nanofibers.


Assuntos
Quitosana , Nanofibras , Humanos , Quitosana/química , Engenharia Tecidual/métodos , Nanofibras/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA