Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 104(1-1): 014218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412341

RESUMO

Weakly nonintegrable many-body systems can restore ergodicity in distinctive ways depending on the range of the interaction network in action space. Action resonances seed chaotic dynamics into the networks. Long-range networks provide well connected resonances with ergodization controlled by the individual resonance chaos time scales. Short-range networks instead yield a dramatic slowing down of ergodization in action space, and lead to rare resonance diffusion. We use Josephson junction chains as a paradigmatic study case. We exploit finite time average distributions to characterize the thermalizing dynamics of actions. We identify an action resonance diffusion regime responsible for the slowing down. We extract the diffusion coefficient of that slow process and measure its dependence on the proximity to the integrable limit. Independent measures of correlation functions confirm our findings. The observed fragile diffusion is relying on weakly chaotic dynamics in spatially isolated action resonances. It can be suppressed, and ergodization delayed, by adding weak action noise, as a proof of concept.

2.
Proc Natl Acad Sci U S A ; 117(6): 2846-2851, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31992642

RESUMO

We study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contributions to the Nernst current in the conventional geometry. The magnetization currents, also referred to as the edge currents, are independent on the conductivity of the sample which is why they can be conveniently described within the thermodynamic approach. They can be related to the Landau thermodynamic potential for an infinite system. We demonstrate that the observable manifestation of this, purely thermodynamic, Nernst effect consists in the strong oscillations of the magnetic field measured in the center of the disk as a function of the external field. The oscillations depend on the temperature difference at the edges of the disk. Dirac fermions and 2D electrons with a parabolic spectrum are characterized by oscillations of different phase and frequency. We predict qualitatively different power dependencies of the magnitude of the Nernst signal on the chemical potential for normal and Dirac carriers.

3.
Phys Rev Lett ; 121(3): 030403, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085818

RESUMO

We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point where the three phases coexist. The truncation of the energy distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of the localization length and in contrast to the thermodynamic limit the insulator phase is present at any temperature.

4.
Phys Rev Lett ; 119(6): 067406, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949610

RESUMO

We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both the potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a critical pumping, and the current direction is stochastically chosen. We analyze the stability of the current with respect to the fluctuations of the condensate. A peculiar spatial current domain structure emerges, where the current direction is switched at the domain walls, and the characteristic domain size and lifetime scale with the pumping power.

5.
Phys Rev Lett ; 117(15): 156601, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768332

RESUMO

We combine numerical diagonalization with semianalytical calculations to prove the existence of the intermediate nonergodic but delocalized phase in the Anderson model on disordered hierarchical lattices. We suggest a new generalized population dynamics that is able to detect the violation of ergodicity of the delocalized states within the Abou-Chakra, Anderson, and Thouless recursive scheme. This result is supplemented by statistics of random wave functions extracted from exact diagonalization of the Anderson model on ensemble of disordered random regular graphs (RRG) of N sites with the connectivity K=2. By extrapolation of the results of both approaches to N→∞ we obtain the fractal dimensions D_{1}(W) and D_{2}(W) as well as the population dynamics exponent D(W) with the accuracy sufficient to claim that they are nontrivial in the broad interval of disorder strength W_{E}10^{5} reveals a singularity in D_{1,2}(W) dependencies which provides clear evidence for the first order transition between the two delocalized phases on RRG at W_{E}≈10.0. We discuss the implications of these results for quantum and classical nonintegrable and many-body systems.

6.
Phys Rev Lett ; 117(2): 020401, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447492

RESUMO

We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigenenergy spectra and the multifractal structure of the wave functions. In 1D and 2D, all states are localized, although in 2D the localization length can be extremely large leading to an effective localization-delocalization crossover in realistic systems. In 3D, all eigenstates are extended but not always ergodic, and we identify the energy intervals of ergodic and nonergodic states. The reduction of the lattice filling induces an ergodic to nonergodic transition, and the excitations are mostly nonergodic at low filling.

7.
Phys Rev Lett ; 114(19): 193901, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024173

RESUMO

We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak distributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomogeneous line broadening.

8.
Phys Rev Lett ; 113(4): 045304, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105630

RESUMO

We consider weakly interacting bosons in a 1D quasiperiodic potential (Aubry-Azbel-Harper model) in the regime where all single-particle states are localized. We show that the interparticle interaction may lead to the many-body delocalization and we obtain the finite-temperature phase diagram. Counterintuitively, in a wide range of parameters the delocalization requires stronger coupling as the temperature increases. This means that the system of bosons can undergo a transition from a fluid to insulator (glass) state under heating.

9.
Phys Rev Lett ; 113(4): 046806, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105646

RESUMO

Statistical analysis of the eigenfunctions of the Anderson tight-binding model with on-site disorder on regular random graphs strongly suggests that the extended states are multifractal at any finite disorder. The spectrum of fractal dimensions f(α) defined in Eq. (3) remains positive for α noticeably far from 1 even when the disorder is several times weaker than the one which leads to the Anderson localization; i.e., the ergodicity can be reached only in the absence of disorder. The one-particle multifractality on the Bethe lattice signals on a possible inapplicability of the equipartition law to a generic many-body quantum system as long as it remains isolated.

10.
Phys Rev Lett ; 111(8): 086401, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010457

RESUMO

We consider chiral electrons moving along the one-dimensional helical edge of a two-dimensional topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of the pinning of the charge density wave by the disordered potential. This mapping proves that arbitrary weak anisotropic disorder in coupling of chiral electrons with spin impurities leads to the Anderson localization of the edge states.

11.
Phys Rev Lett ; 107(7): 076401, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902407

RESUMO

We discuss quantum propagation of dipole excitations in two dimensions. This problem differs from the conventional Anderson localization due to the existence of long-range hops. We find that the critical wave functions of the dipoles always exist which manifest themselves by a scale independent diffusion constant. If the system is T invariant the states are critical for all values of the parameters. Otherwise, there can be a "metal-insulator" transition between this "ordinary" diffusion and the Levy flights (the diffusion constant logarithmically increasing with the scale). These results follow from the two-loop analysis of the modified nonlinear supermatrix σ model.

12.
Phys Rev Lett ; 105(13): 137001, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230800

RESUMO

The superconductor-insulator transition (SIT) in regular arrays of Josephson junctions is studied at low temperatures. We derived an imaginary time Ginzburg-Landau-type action properly describing the Coulomb interaction. The renormalization group analysis at zero temperature T=0 in the space dimensionality d=3 shows that the SIT is always of the first order. At finite T, a tricritical point separates the lines of the first- and second-order phase transitions. The same conclusion holds for d=2 if the mutual capacitance is larger than the distance between junctions.

13.
Phys Rev Lett ; 105(14): 147001, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230860

RESUMO

Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.

14.
Phys Rev Lett ; 103(12): 127001, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19792452

RESUMO

We consider microscopically low-temperature transport in weakly disordered arrays of Josephson junctions in the Coulomb blockade regime. We demonstrate that at sufficiently low temperatures the main contribution to the dc conductivity comes from the motion of single-Cooper-pair excitations, scattered by irregularities in the array. Being proportional to the concentration of the excitations, the conductivity is exponentially small in temperature with the activation energy close to the charging energy of a Cooper pair on a superconductive island. Applying a diagrammatic approach to treat the disorder potential we calculate the Drude-like conductivity and obtain weak localization corrections. At sufficiently low temperatures or strong disorder the Anderson localization of Cooper pairs ensues.

15.
Phys Rev Lett ; 99(16): 160402, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995224

RESUMO

We determine the radio-frequency (rf) spectra for nonstationary states of a fermionic condensate produced by a rapid switch of the scattering length. The rf spectrum of the nonequilibrium state with constant BCS order parameter has two features in contrast with equilibrium where there is a single peak. The additional feature reflects the presence of excited pairs in the steady state. In the state characterized by periodically oscillating order parameter, the rf-absorption spectrum contains two sequences of peaks spaced by the frequency of oscillations. Satellite peaks appear due to a process where a rf photon in addition to breaking a pair emits or absorbs oscillation quanta.

16.
Phys Rev Lett ; 99(2): 020403, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17678202

RESUMO

We predict a nonequilibrium critical phenomenon in the space-time density evolution of a fermionic gas above the temperature of transition into the superfluid phase. On the BCS side of the Bose-Einstein condensation-BCS crossover, the evolution of a localized density disturbance exhibits a negative echo at the point of the initial inhomogeneity. Approaching the Bose-Einstein condensation side, this effect competes with the slow spreading of the density of bosonic molecules. However, even here the echo dominates for large enough times. This effect may be used as an experimental tool to locate the position of the transition.

17.
Science ; 315(5816): 1252-5, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17332407

RESUMO

The focusing of electric current by a single p-n junction in graphene is theoretically predicted. Precise focusing may be achieved by fine-tuning the densities of carriers on the n- and p-sides of the junction to equal values. This finding may be useful for the engineering of electronic lenses and focused beam splitters using gate-controlled n-p-n junctions in graphene-based transistors.

18.
Phys Rev Lett ; 97(14): 146805, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155283

RESUMO

Because of the chiral nature of electrons in a monolayer of graphite (graphene) one can expect weak antilocalization and a positive weak-field magnetoresistance in it. However, trigonal warping (which breaks p-->-p symmetry of the Fermi line in each valley) suppresses antilocalization, while intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore conventional negative magnetoresistance. We show this by evaluating the dependence of the magnetoresistance of graphene on relaxation rates associated with various possible ways of breaking a "hidden" valley symmetry of the system.

19.
Phys Rev Lett ; 96(9): 097009, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16606305

RESUMO

We study decoherence in a qubit with the distance between the two levels affected by random flips of bistable fluctuators. For the case of a single fluctuator we evaluate explicitly an exact expression for the phase-memory decay in the echo experiment with a resonant ac excitation. The echo signal as a function of time shows a sequence of plateaus. The position and the height of the plateaus can be used to extract the fluctuator switching rate gamma and its coupling strength v. At small times the logarithm of the echo signal is proportional to t3. The plateaus disappear when the decoherence is induced by many fluctuators. In this case the echo signal depends on the distribution of the fluctuators parameters. According to our analysis, the results significantly deviate from those obtained in the Gaussian model as soon as v greater than or approximately equal gamma.

20.
Phys Rev Lett ; 95(7): 076603, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16196808

RESUMO

Inelastic spin relaxation and spin splitting epsilon(s) in lateral quantum dots are studied in the regime of strong in-plane magnetic field. Because of both the g-factor energy dependence and spin-orbit coupling, epsilon(s) demonstrates a substantial nonlinear magnetic field dependence similar to that observed by Hanson et al. [Phys. Rev. Lett. 91, 196802 (2003)]. It also varies with the in-plane orientation of the magnetic field due to crystalline anisotropy of the spin-orbit coupling. The spin relaxation rate is also anisotropic, the anisotropy increasing with the field. When the magnetic length is less than the "thickness" of the GaAs dot, the relaxation can be an order of magnitude faster for B ||[100] than for B || [110].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...