Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14415, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924344

RESUMO

BACKGROUND: Intracranial stereotactic radiosurgery (SRS) aims at achieving highly conformal dose distribution and, at the same time, attaining rapid dose falloff outside the treatment target. SRS is performed using different techniques including dynamic conformal arcs (DCA) and volumetric modulated arc therapy (VMAT). PURPOSE: In this study, we compare dose conformity and falloff in DCA and VMAT plans for SRS with a single target. METHODS: To compare dose conformity in SRS plans, we employ a novel conformity index C I d e x p $C{I}_{{d}_{exp}}$ , RTOG conformity index ( C I R T O G $C{I}_{RTOG}$ ), and Riet-Paddick conformity index ( C I R P $C{I}_{RP}$ ). In addition, we use indices R 50 % $R50\% $ , V 10 G y ${V}_{10Gy}$ , and V 12 G y ${V}_{12Gy}$ to evaluate dose falloff. For each of the considered 118 cases of SRS, two plans were created using DCA and VMAT. A two-tailed Student's t-test was used to evaluate the difference between the employed indices for the DCA and VMAT plans. RESULTS: The studied VMAT plans were characterized by higher dose conformity than the DCA plans. The differences between the conformity indices for the DCA plans and VMAT plans were statistically significant. The DCA plans had a smaller number of monitor units (MUs) and smaller indices R50%, V10 Gy, and V12 Gy than the VMAT plans. However, the differences between R50%, V10 Gy, and V12 Gy for the DCA and VMAT plans were not statistically significant. CONCLUSIONS: Although the studied VMAT plans had higher dose conformity, they also had larger MUs than the DCA plans. In terms of dose falloff characterized by parameters R50%, V10 Gy, and V12 Gy, DCA serves as a reasonable alternative to VMAT in the case of a single brain metastasis.

2.
Med Phys ; 51(3): 2210-2220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947447

RESUMO

BACKGROUND: Evaluation of dose conformity is important to ensure minimum dose to normal tissue and sufficient dose coverage of the planning target volume (PTV). The existing conformity indices depend on the PTV volume and do not differentiate between two different scenarios: overdosing normal tissue and underdosing PTV. PURPOSE: In this study, we introduce a novel index to assess conformity of dose distributions in radiotherapy. METHODS: The suggested conformity index C I d e x p $C{I_{{d_{exp}}}}$ is defined by the ratio of the volume representing actual "non-conformity" of the planned dose and the volume representing acceptable "non-conformity." The latter volume is produced by expanding the PTV. If both the average distance ( d ¯ $\overline d $ ) between the reference isodose surface and planning target volume and arbitrarily selected PTV expansion margin ( d e x p ${d_{exp}}$ ) are much smaller than the size of the PTV, C I d e x p $C{I_{{d_{exp}}}}$ approximately equals the ratio d ¯ d e x p $\dfrac{{\bar d}}{{{d_{exp}}}}$ . In this work, C I d e x p $C{I_{{d_{exp}}}}$ was utilized to analyze 90 cases of brain metastases treated with stereotactic radiation therapy (SRS) and 102 cases of lung cancer treated with stereotactic body radiation therapy (SBRT). RESULTS: For d e x p ${d_{exp}}$  = 0.1 cm, all considered SRS treatment plans were characterized by C I d e x p < 1 $C{I_{{d_{exp}}}} < 1$ while 2 out of 102 SBRT plans had C I d e x p > 1 $C{I_{{d_{exp}}}} > 1$ . The average values of C I d e x p $C{I_{{d_{exp}}}}$ for SRS and SBRT plans were 0.31 and 0.43, respectively. For d e x p ${d_{exp}}$  = 0.2 cm, all studied treatment plans had C I d e x p < 1 $C{I_{{d_{exp}}}} < 1$ , and the average values of C I d e x p $C{I_{{d_{exp}}}}$ for SRS and SBRT plans were 0.15 and 0.25, respectively. CONCLUSIONS: The suggested conformity index C I d e x p $C{I_{{d_{exp}}}}$ varies less with PTV volume than the RTOG and Riet-Paddick indices frequently used for evaluation of dose conformity. In addition, C I d e x p $C{I_{{d_{exp}}}}$ can be expressed as a sum of two terms which describe "over-coverage" and "under-coverage" of the treatment target. The results confirm that C I d e x p $C{I_{{d_{exp}}}}$ can be used for evaluation of dose conformity in SRS and SBRT.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Pulmonares/cirurgia , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos
3.
Med Phys ; 50(2): 1086-1095, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36272439

RESUMO

PURPOSE: We describe a new approach to evaluate conformity of dose distributions in radiotherapy. METHODS: The suggested conformity factor λ is defined by using existing conformity indices and expansion of the planning target volume (PTV). If the average distance ( d ¯ $\bar d$ ) between the PTV and reference isodose surface and an arbitrarily selected PTV expansion margin ( d e x p ${d_{exp}}$ ) are both much smaller than the size of the PTV, then λ approximately equals the ratio d ¯ d e x p $\frac{{\bar d}}{{{d_{exp}}}}$ . We use λ to analyze several cases of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). RESULTS: In the case of SRS with a single target or multiple targets, treatment plans produced with the help of volumetric modulated arc therapy (VMAT) have smaller λ than plans produced by using dynamic conformal arcs (DCA). Likewise, it is demonstrated that in the case of SBRT, λ is reduced by employing VMAT instead of DCA. It is also shown that if the distance between the reference isodose surface and surface of the PTV is fixed, λ varies less with variations in PTV volume compared to frequently used conformity indices. CONCLUSIONS: The described conformity factor λ can be applied clinically to compare and rank treatment plans for lesions of different sizes. It is suggested that conditions λ < 1 $\lambda < 1$ and λ > 1 can be employed as "pass" and "fail" criteria, respectively, for dose conformity assessment with appropriate choice of d e x p ${d_{exp}}$ .


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
4.
Cureus ; 12(11): e11660, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33391899

RESUMO

Purpose The aim of this study is to investigate the feasibility of prostate stereotactic body radiation therapy treatment with a newly developed Varian HalcyonTM 2.0 machine by comparing radiotherapy plans with previously delivered CyberKnife G4 plans created with the previous version of CyberKnife Treatment Planning System Multiplan 4.6.1. Methods Fifteen previously treated prostate stereotactic body radiation therapy treatment CyberKnife plans were re-planned retrospectively according to the Radiation Therapy Oncology Group 0938 protocol on a HalcyonTM 2.0 machine with a prescription of 3625 cGy in five fractions. Results All re-plans on a HalcyonTM 2.0 were able to meet the Radiation Therapy Oncology Group 0938 protocol goals and constraints. The re-plans decreased the maximum dose to skin and urethra, mean doses to the bladder and rectum, and also improve the conformity index and the Planning Target Volume coverage. However, D1cc to the rectum, D1cc and D10% to the bladder increased with no statistically significant differences (p > 0.05) with the re-plans. Conclusion The HalcyonTM 2.0 can generate stereotactic body radiation therapy treatment prostate plans created based on the Radiation Therapy Oncology Group 0938 protocol by delivering adequate coverage to the target while sparing healthy tissues.

5.
Phys Med ; 32(4): 631-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27053452

RESUMO

The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators-via a degradable coating-and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4Gy, 5ng·g(-1) of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2nm sized NPs, with an initial concentration of 1mg·g(-1), we found that 2-10days of diffusion is required to obtain desired concentrations of CONPs in regions 1-2cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity.


Assuntos
Neoplasias da Mama/radioterapia , Cério/administração & dosagem , Nanopartículas/administração & dosagem , Protetores contra Radiação/administração & dosagem , Neoplasias da Mama/metabolismo , Cério/farmacocinética , Feminino , Humanos , Modelos Biológicos , Nanopartículas/metabolismo , Protetores contra Radiação/farmacocinética , Planejamento da Radioterapia Assistida por Computador , Espécies Reativas de Oxigênio/metabolismo
6.
Phys Med Biol ; 60(18): 7035-43, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26309064

RESUMO

Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV administration during external beam radiotherapy. For FDA approved concentrations of CNPs or CBNPs considered, this could allow for additional dose enhancement to tumors via photoelectric mechanism during concomitant chemoradiotherapy.


Assuntos
Braquiterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Nanopartículas Metálicas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Administração por Inalação , Cisplatino/administração & dosagem , Ouro/química , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
7.
IFMBE Proc ; 51: 907-910, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28003818

RESUMO

This work investigates the dosimetric feasibility of employing gold nanoparticles (AuNPs) or carboplatin nano-particles (CNPs) to enhance radiotherapy (RT) treatment efficacy for ocular cancers: retinoblastoma (Rb) and choroidal melanoma (CM), during kV-energy internal and external beam radiotherapy. The results predict that substantial dose enhancement may be achieved by employing AuNPs or CNPs in conjunction with radiotherapy for ocular cancer using kV-energy photon beams. Brachytherapy sources yield higher dose enhancement than the external beam in kV energy range. However, the external beam has the advantage of being non-invasive.

8.
Phys Med ; 31(1): 25-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492359

RESUMO

We predict, for the first time, that by using United States Food and Drug Administration approved concentrations of cisplatin, major radiosensitization may be achieved via photoelectric mechanism during concomitant chemoradiotherapy (CCRT). Our analytical calculations estimate that radiotherapy (RT) dose to cancer cells may be enhanced via this mechanism by over 100% during CCRT. The results proffer new potential for significantly enhancing CCRT via an emerging clinical scenario, where the cisplatin is released in-situ from RT biomaterials loaded with cisplatin nanoparticles.


Assuntos
Antineoplásicos/farmacologia , Quimiorradioterapia/métodos , Cisplatino/farmacologia , Aprovação de Drogas , Elétrons , Luz , United States Food and Drug Administration , Antineoplásicos/uso terapêutico , Braquiterapia , Cisplatino/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Neoplasias/terapia , Dosagem Radioterapêutica , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA