Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 20(11): 1328-1333, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29565419

RESUMO

PURPOSE: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) are used to diagnose genetic and inherited disorders. However, few studies comparing the detection rates of WES and WGS in clinical settings have been performed. METHODS: Variant call format files were generated and raw data analysis was performed in cases in which the final molecular results showed discrepancies. We classified the possible explanations for the discrepancies into three categories: the time interval between the two tests, the technical limitations of WES, and the impact of the sequencing system type. RESULTS: This cohort comprised 108 patients with negative array comparative genomic hybridization and negative or inconclusive WES results before WGS was performed. Ten (9%) patients had positive WGS results. However, after reanalysis the WGS hit rate decreased to 7% (7 cases). In four cases the variants were identified by WES but missed for different reasons. Only 3 cases (3%) were positive by WGS but completely unidentified by WES. CONCLUSION: In this study, we showed that 30% of the positive cases identified by WGS could be identified by reanalyzing the WES raw data, and WGS achieved an only 7% higher detection rate. Therefore, until the cost of WGS approximates that of WES, reanalyzing WES raw data is recommended before performing WGS.


Assuntos
Hibridização Genômica Comparativa/métodos , Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/diagnóstico , Sequenciamento Completo do Genoma/métodos , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Genoma Humano/genética , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...