Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279926

RESUMO

Transient Receptor Potential Canonical 5 (T RP C5) and T RP C6 channels play critical physiological roles in various cell types. Their involvement in numerous disease progression mechanisms has led to extensive searches for their inhibitors. Although several potent T RP C inhibitors have been developed and the structure of their binding sites were mapped using cryo electron microscopy, a comprehensive understanding of the molecular interactions within the inhibitor binding site of T RP Cs remains elusive. This study aimed to decipher the structural determinants and molecular mechanisms contributing to the differential binding of clemizole to T RP C5 and T RP C6, with a particular focus on the accessibility of binding site residues. This information can help better understand what molecular features allow for selective binding, which is a key characteristic of clinically effective pharmacological agents. Using computational methodologies, we conducted an in-depth molecular docking analysis of clemizole with T RP C5 and T RP C6 channels. The protein structures were retrieved from publicly accessible protein databases. Discovery Studio 2020 Client Visualizer and Chimera software facilitated our in-silico mutation experiments and enabled us to identify the critical structural elements influencing clemizole binding. Our study reveals key molecular determinants at the clemizole binding site, specifically outlining the role of residues' Accessible Surface Area (ASA) and Relative Accessible Surface Area (RASA) in differential binding. We found that lower accessibility of T RP C6 binding site residues, compared to those in T RP C5, could account for the lower affinity binding of clemizole to T RP C6. This work illuminates the pivotal role of binding site residue accessibility in determining the affinity of clemizole to T RP C5 and T RP C6. A nuanced understanding of the distinct binding properties between these homologous proteins may pave the way for the development of more selective inhibitors, promising improved therapeutic efficacy and fewer off-target effects. By demystifying the structural and molecular subtleties of T RP C inhibitors, this research could significantly accelerate the drug discovery process, offering hope to patients afflicted with T RP C-related diseases.

2.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287492

RESUMO

cAMP-specific 3',5'-cyclic phosphodiesterase 4 A (PDE4A) holds a pivotal role in modulating intracellular levels of cyclic adenosine monophosphate (cAMP). Targeting PDE4A with novel therapeutic agents shows promise in addressing neurological disorders (e.g. Alzheimer's and Parkinson's diseases), mood disorders (depression, anxiety), inflammatory conditions (asthma, chronic obstructive pulmonary disease), and even cancer. In this study, we present a comprehensive approach that integrates virtual screening and molecular dynamics (MD) simulations to identify potential inhibitors of PDE4A from the existing pool of FDA-approved drugs. The initial compound selection was conducted focusing on binding affinity scores, which led to the identification of several high-affinity compounds with potential PDE4A binding properties. From the refined selection process, two promising compounds, Fluspirilene and Dihydroergocristine, emerged as strong candidates, displaying substantial affinity and specificity for the PDE4A binding site. Interaction analysis provided robust evidence of their binding capabilities. To gain deeper insights into the dynamic behavior of Fluspirilene and Dihydroergocristine in complex with PDE4A, we conducted 300 ns MD simulations, principal components analysis (PCA), and free energy landscape (FEL) analysis. These analyses revealed that Fluspirilene and Dihydroergocristine binding stabilized the PDE4A structure and induced minimal conformational changes, highlighting their potential as potent binders. In conclusion, our study systematically explores repurposing existing FDA-approved drugs as PDE4A inhibitors through a comprehensive virtual screening pipeline. The identified compounds, Fluspirilene and Dihydroergocristine, exhibit a strong affinity for PDE4A, displaying characteristics that support their suitability for further development as potential therapeutic agents for conditions associated with PDE4A dysfunction.Communicated by Ramaswamy H. Sarma.

3.
ACS Omega ; 8(46): 44086-44092, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027328

RESUMO

Polyphosphate polymers are chains of phosphate monomers chemically bonded together via phosphoanhydride bonds. They are found in all prokaryotic and eukaryotic organisms and are among the earliest, most anionic, and most mysterious molecules known. They are everywhere, from small cellular components to additives in our food. There is a strong association between hyperphosphatemia and mortality. That is why it is crucial to assess how polyphosphates, as food additives, affect the quality of edible proteins. This study investigated the effect of inexpensive and widely used food additives (hexametaphosphate labeled as E452) on bakery items, meat products, fish, and soft drinks. Using various spectroscopic and microscopic techniques, we examined how hexametaphosphate affected the aggregation propensity, structure, and stability of a commonly used food protein: hen egg white lysozyme (HEWL). The solubility of HEWL is affected in a bimodal fashion by the concentration of hexametaphosphate. The bimodal concentration-dependent effect was also observed in the tertiary and secondary structural changes. Hexametaphosphate-induced HEWL aggregates were amorphous, as evidenced by ThT fluorescence, far-UV CD, and TEM imaging. This study showed that the food additive (hexametaphosphate) may denature and aggregate proteins and may lead to undesirable health issues.

4.
Saudi J Biol Sci ; 30(8): 103714, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457235

RESUMO

Prediabetes is an increase-risk state for diabetes that is associated with an increase in blood glucose levels to more than normal, but not increased enough to be termed as type 2 diabetes mellitus (T2DM). A timely intervention and management of prediabetes can stop its further progression to the diabetic state. Many cytokines are involved in diseases including diabetes, however, their role in prediabetes is unknown. In this study, we attempted to analyze numerous proinflammatory cytokines in prediabetic patients. A total of 60 adult Saudi prediabetes patients and healthy control individuals were included in this study. To better understand the role of the proinflammatory cytokines in prediabetes patients and its potential link to the disease outcome, the variations in the levels of these cytokines were investigated using Multi-Analyte ELISA technique. The T helper cells (Th1 and Th2) immune response expression profiling of 84 genes was done using Real Time-quantitative PCR (RT-qPCR) technique. The present finding showed that serum Interleukin IL-2, IL-1ß, and IL-1α levels of all prediabetes patients were increased when compared with healthy control cases (P < 0.05). Inductions of proinflammatory cytokines and upregulation of Th1 and Th2 immune genes might play a potential role during prediabetes status and may be linked to the disease outcome. Further studies are needed to investigate the underlying mechanism of these proinflammatory cytokines in diabetes development. A strong positive correlation was found between IL and 1α with glucose levels than with IL-1ß and IL-2. In conclusion, cytokines, especially IL-1, may play a critical role in the development of diabetes.

5.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446564

RESUMO

Flavonoids are secondary metabolites that are non-essential for plant growth or survival, and they also provide numerous health benefits to humans. They are antioxidants that shield plants from the ill effects of ultraviolet light, pests, and diseases. They are beneficial to health for several reasons, including lowering inflammation, boosting cardiovascular health, and lowering cancer risk. This study looked into the physicochemical features of these substances to determine the potential pharmacological pathways involved in their protective actions. Potential targets responsible for the protective effects of quercetin, naringenin, and rutin were identified with SwissADME. The associated biological processes and protein-protein networks were analyzed by using the GeneMANIA, Metascape, and STRING servers. All the flavonoids were predicted to be orally bioavailable, with more than 90% targets as enzymes, including kinases and lyases, and with common targets such as NOS2, CASP3, CASP9, CAT, BCL2, TNF, and HMOX1. TNF was shown to be a major target in over 250 interactions. To extract the "biological meanings" from the MCODE networks' constituent parts, a GO enrichment analysis was performed on each one. The most important transcription factors in gene regulation were RELA, NFKB1, PPARG, and SP1. Treatment with quercetin, naringenin, or rutin increased the expression and interaction of the microRNAs' hsa-miR-34a-5p, hsa-miR-30b-5p, hsa-let-7a-5p, and hsa-miR-26a-1-3p. The anticancer effects of hsa-miR-34a-5p have been experimentally confirmed. It also plays a critical role in controlling other cancer-related processes such as cell proliferation, apoptosis, EMT, and metastasis. This study's findings might lead to a deeper comprehension of the mechanisms responsible for flavonoids' protective effects and could present new avenues for exploration.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Quercetina/farmacologia , Rutina/farmacologia , Redes Reguladoras de Genes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Perfilação da Expressão Gênica/métodos
6.
J Biomol Struct Dyn ; : 1-11, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254309

RESUMO

Proto-oncogene tyrosine-protein kinase ROS (ROS1) is a member of the sevenless receptor, which affects epithelial cell differentiation and is highly expressed in a variety of tumor cells. The elevated expression and dysfunction of ROS1 have been involved in various malignancies, such as non-small cell lung cancer (NSCLC), stomach cancer, ovarian, breast cancer, cholangiocarcinoma, colorectal cancer, adenosarcoma, oesophageal cancer, etc. ROS1 has been postulated as a potential drug target in anticancer therapeutics. In this study, we carried out a virtual screening of phytochemicals against ROS1 to identify its potential inhibitors. The virtual screening process was performed on the ROS1 structure, where two phytochemicals, Helioscopinolide C and Taiwanin C, were identified. These compounds resulted from filters like Lipinski rule of five, PAINS filter, binding affinities values, and all-atom molecular dynamics (MD) simulations followed by principal component analysis (PCA) and essential dynamics. The findings of this study highlight the role of ROS1 in multiple physiological candidates and its therapeutic targeting using phytochemicals. This study suggests Helioscopinolide C and Taiwanin C as potential compounds for therapeutic development targeting ROS1-associated non-small cell lung cancer for clinical applications. Further in vitro and in vivo experiments are required to validate these findings.Communicated by Ramaswamy H. Sarma.

7.
Heliyon ; 9(4): e15270, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123968

RESUMO

Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 µM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 µM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 µM VAL while the increase in ß-sheet was detected at 100 µM concentration of VAL. The hydrophobicity of HEWL was increased at 100 µM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 µM VAL, while at 100 µM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 µM, preventing aggregation. Also, we assume that at 100 µM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.

8.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175658

RESUMO

Several kinds of anticancer drugs are presently commercially accessible, but low efficacy, solubility, and toxicity have reduced the overall therapeutic indices. Thus, the search for promising anticancer drugs continues. The interactions of numerous essential anticancer drugs with DNA are crucial to their biological functions. Here, the anticancer effects of N-ethyl toluene-4-sulphonamide (8a) and 2,5-Dichlorothiophene-3-sulphonamide (8b) on cell lines from breast and cervical cancer were investigated. The study also compared how these substances interacted with the hearing sperm DNA. The most promising anticancer drug was identified as 2,5-Dichlorothiophene-3-sulfonamide (8b), which showed GI50 of 7.2 ± 1.12 µM, 4.62 ± 0.13 µM and 7.13 ± 0.13 µM against HeLa, MDA-MB231 and MCF-7 cells, respectively. Moreover, it also exhibited significant electrostatic and non-electrostatic contributions to the binding free energy. The work utilized computational techniques, such as molecular docking and molecular dynamic (MD) simulations, to demonstrate the strong cytotoxicity of 2,5-Dichlorothiophene-3-sulfamide (8b) in comparison to standard Doxorubicin and cisplatin, respectively. Molecular docking experiments provided additional support for a role for the minor groove in the binding of the 2,5-Dichlorothiophene-3-sulfamide (8b)-DNA complex. The molecular docking studies and MD simulation showed that both compounds revealed comparable inhibitory potential against standard Doxorubicin and cisplatin. This study has the potential to lead to the discovery of new bioactive compounds for use in cancer treatment, including metallic and non-metallic derivatives of 2,5-Dichlorothiophene-3-sulfonamide (8b). It also emphasizes the worth of computational approaches in the development of new drugs and lays the groundwork for future research.


Assuntos
Antineoplásicos , Cisplatino , Masculino , Humanos , Cisplatino/farmacologia , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Antineoplásicos/química , Células HeLa , Doxorrubicina/farmacologia , DNA/metabolismo , Desenvolvimento de Medicamentos , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral
9.
Mol Biol Rep ; 50(5): 4447-4457, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37014566

RESUMO

BACKGROUND: Ovarian cancer leads to devastating outcomes, and its treatment is highly challenging. At present, there is a lack of clinical symptoms, well-known sensitivity biomarkers, and patients are diagnosed at an advanced stage. Currently, available therapeutics against ovarian cancer are inefficient, costly, and associated with severe side effects. The present study evaluated the anticancer potential of zinc oxide nanoparticles (ZnO NPs) that were successfully biosynthesized in an ecofriendly mode using pumpkin seed extracts. METHODS AND RESULTS: The anticancer potential of the biosynthesized ZnO NPs was assessed using an in vitro human ovarian teratocarcinoma cell line (PA-1) by well-known assays such as MTT assay, morphological alterations, induction of apoptosis, measurement of reactive oxygen species (ROS) production, and inhibition of cell adhesion/migration. The biogenic ZnO NPs exerted a high level of cytotoxicity against PA-1 cells. Furthermore, the ZnO NPs inhibited cellular adhesion and migration but induced ROS production and cell death through programmed cell death. CONCLUSION: The aforementioned anticancer properties highlight the therapeutic utility of ZnO NPs in ovarian cancer treatment. However, further research is recommended to envisage their mechanism of action in different cancer models and validation in a suitable in vivo system.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias Ovarianas , Teratocarcinoma , Óxido de Zinco , Feminino , Humanos , Óxido de Zinco/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Ovarianas/tratamento farmacológico
10.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902371

RESUMO

The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C interactions with BSA using spectroscopic methods such as fluorescence and UV-visible spectroscopy. In order to acquire a deeper comprehension of how BSA interacts with binding pockets, a molecular docking study was carried out. The fluorescence of BSA was quenched by 2C via a static quenching mechanism since a decrease in quenching constants was observed from 1.27 × 105 to 1.14 × 105. Thermodynamic parameters indicated hydrogen and van der Waals forces responsible for the BSA-2C complex formation with binding constants ranging between 2.91 × 105 and 1.29 × 105, which suggest a strong binding interaction. Site marker studies displayed that 2C binds to BSA's subdomains IIA and IIIA. Molecular docking studies were conducted to further comprehend the molecular mechanism of the BSA-2C interaction. The toxicity of 2C was predicted by Derek Nexus software. Human and mammalian carcinogenicity and skin sensitivity predictions were associated with a reasoning level of equivocal, inferring 2C to be a potential drug candidate.


Assuntos
Antifúngicos , Soroalbumina Bovina , Animais , Humanos , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Hidrazinas , Termodinâmica , Piridinas , Sítios de Ligação , Espectrometria de Fluorescência , Ligação Proteica , Espectrofotometria Ultravioleta , Dicroísmo Circular , Mamíferos/metabolismo
11.
J Mol Recognit ; 36(6): e3009, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841950

RESUMO

Several proteins and peptides tend to form an amyloid fibril, causing a range of unrelated diseases, from neurodegenerative to certain types of cancer. In the native state, these proteins are folded and soluble. However, these proteins acquired ß-sheet amyloid fibril due to unfolding and aggregation. The conversion mechanism from well-folded soluble into amorphous or amyloid fibril is not well understood yet. Here, we induced unfolding and aggregation of hen egg-white lysozyme (HEWL) by reducing agent dithiothreitol and applied mechanical sheering force by constant shaking (1000 rpm) on the thermostat for 7 days. Our turbidity results showed that reduced HEWL rapidly formed aggregates, and a plateau was attained in nearly 5 h of incubation in both shaking and non-shaking conditions. The turbidity was lower in the shaking condition than in the non-shaking condition. The thioflavin T binding and transmission electron micrographs showed that reduced HEWL formed amorphous aggregates in both conditions. Far-UV circular dichroism results showed that reduced HEWL lost nearly all alpha-helical structure, and ß-sheet secondary structure was not formed in both conditions. All the spectroscopic and microscopic results showed that reduced HEWL formed amorphous aggregates under both conditions.


Assuntos
Amiloide , Muramidase , Animais , Temperatura , Muramidase/química , Amiloide/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Galinhas/metabolismo
12.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834523

RESUMO

Amyloid fibrils abnormally accumulate together in the human body under certain conditions, which can result in lethal conditions. Thus, blocking this aggregation may prevent or treat this disease. Chlorothiazide (CTZ) is a diuretic and is used to treat hypertension. Several previous studies suggest that diuretics prevent amyloid-related diseases and reduce amyloid aggregation. Thus, in this study we examine the effects of CTZ on hen egg white lysozyme (HEWL) aggregation using spectroscopic, docking, and microscopic approaches. Our results showed that under protein misfolding conditions of 55 °C, pH 2.0, and 600 rpm agitation, HEWL aggregated as evidenced by the increased turbidity and Rayleigh light scattering (RLS). Furthermore, thioflavin-T, as well as trans electron microscope (TEM) analysis confirmed the formation of amyloid structures. An anti-aggregation effect of CTZ is observed on HEWL aggregations. Circular dichroism (CD), TEM, and Thioflavin-T fluorescence show that both CTZ concentrations reduce the formation of amyloid fibrils as compared to fibrillated. The turbidity, RLS, and ANS fluorescence increase with CTZ increasing. This increase is attributed to the formation of a soluble aggregation. As evidenced by CD analysis, there was no significant difference in α-helix content and ß-sheet content between at 10 µM CTZ and 100 µM. A TEM analysis of HEWL coincubated with CTZ at different concentrations validated all the above-mentioned results. The TEM results show that CTZ induces morphological changes in the typical structure of amyloid fibrils. The steady-state quenching study demonstrated that CTZ and HEWL bind spontaneously via hydrophobic interactions. HEWL-CTZ also interacts dynamically with changes in the environment surrounding tryptophan. Computational results revealed the binding of CTZ to ILE98, GLN57, ASP52, TRP108, TRP63, TRP63, ILE58, and ALA107 residues in HEWL via hydrophobic interactions and hydrogen bonds with a binding energy of -6.58 kcal mol-1. We suggest that at 10 µM and 100 µM, CTZ binds to the aggregation-prone region (APR) of HEWL and stabilizes it, thus preventing aggregation. Based on these findings, we can conclude that CTZ has antiamyloidogenic activity and can prevent fibril aggregation.


Assuntos
Anti-Hipertensivos , Microscopia , Humanos , Animais , Clorotiazida , Muramidase/química , Dicroísmo Circular , Amiloide/metabolismo , Galinhas/metabolismo
13.
Arch Environ Contam Toxicol ; 84(2): 179-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586095

RESUMO

In this study, we measured various parameters of oxidative stress, immune response, and abnormalities in the erythrocyte nucleus of Labeo rohita inhabiting the polluted Kshipra River, India. The river water contains heavy metals in this order: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Fe showed the highest accumulation in gills, liver, and gut, whereas Ni (gills and gut) and Cd (liver) were lowest accumulated. The superoxide dismutase (SOD) and catalase (CAT) were found to be increased significantly (p < 0.05) in the gills (SOD: 211%; CAT: 150%), liver (SOD: 447%; CAT: 304%), and gut (SOD: 98.11%; CAT: 58.69%) in comparison with the reference fish. However, glutathione S transferase (GST) showed significantly (p < 0.05) higher activity in the gills (25.5%) but lower activity in the liver (- 49.22%) and the gut (- 30.57%). Moreover, reduced glutathione (GSH) decreased significantly (p < 0.05) in the gills (- 46.66%), liver (- 33.20%), and gut (- 39.87%). Despite the active response of the antioxidant enzymes, the highest lipid peroxidation was observed in the liver (463%). The effect of heavy metals was also observed on the immunity of the fish, causing immunosuppression as evident by significantly (p < 0.05) lower values of acid phosphatase (- 50%), myeloperoxidase (- 48.33%), and nitric oxide synthase (- 50%) in serum. Histopathological findings showed gill lamellae shortening, hyperplasia, club-shaped lamellar tip in exposed gills and necrosis, vacuolization, and pyknosis in the exposed liver. Furthermore, polluted river water was also found to induce micronuclei (2.1%) and lobed nuclei (0.72%) in erythrocytes (0.65%). These results indicate the potential of heavy metal-induced oxidative stress and other forms of stress in inhabiting fish, highlighting the need to control the pollution of this river water.


Assuntos
Cyprinidae , Metais Pesados , Poluentes Químicos da Água , Animais , Rios , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo , Metais Pesados/análise , Poluição da Água , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Cyprinidae/metabolismo , Oxirredução , Fígado/metabolismo , Água , Brânquias/metabolismo , Peroxidação de Lipídeos
14.
ACS Biomater Sci Eng ; 8(12): 5210-5220, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36446128

RESUMO

Synthetic lethality is a pragmatic targeted cancer therapy approach in which cancer cells harboring genetic alterations are exploited for the specific killing of cancer cells. Earlier, we have established a synthetic lethal (SL) interaction between two genes that are CHK2 and PRDX2 in colorectal cancer (CRC) cells. The SL interaction between CHK2 and PRDX2 resulted in selective targeting of CHK2-defective CRC cells. N-Carbamoyl alanine (NCA) is a PRDX2 inhibitor and is a peptide-like organic compound, which degrades after oral administration in harsh gastric pH. To overcome the limitations of NCA, a chitosan-based nanocarrier was developed for the entrapment of NCA. In this study, we targeted the SL interaction between PRDX2 and CHK2 using NCA-loaded chitosan nanoparticles (NCA-Chit NPs) to selectively inhibit the CHK2-null HCT116 cells. NCA-Chit NPs were assessed for various physicochemical characterizations such as the hydrodynamic diameter (size), zeta potential, and polydispersity index using a Zetasizer. Additionally, morphological studies for the shape and size of NPs were confirmed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Cellular uptake of NPs was confirmed using confocal microscopy, which exhibited that nanoparticles were able to internalize into the HCT116 cells. Blank Chit NPs were found to be cytocompatible as they did not exert any cytotoxic effects on hTERT, L929, and Caco-2 cells (intestinal epithelial cells). Importantly, NCA-Chit NPs were quite hemocompatible also. In the form of an NCA-chitosan nanoformulation, the efficacy was enhanced by about 8 times compared to free form of NCA towards selective killing of CHK2-null HCT116 cells as compared to HCT116 cells. The chitosan-based nanoformulation for NCA was developed to augment the efficacy of the NCA for enhanced cell death of colorectal cancer cells having CHK2 defects.


Assuntos
Quitosana , Neoplasias Colorretais , Nanopartículas , Humanos , Quitosana/farmacologia , Células CACO-2 , Nanopartículas/uso terapêutico , Nanopartículas/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Peroxirredoxinas/genética
15.
Biomolecules ; 12(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358960

RESUMO

Vascular endothelial growth factor (VEGF) is an angiogenic factor involved in tumor growth and metastasis. Gremlin has been proposed as a novel therapeutic pathway for the treatment of renal inflammatory diseases, acting via VEGFR 2 receptor. To date, most FDA-approved tyrosine kinase (TK) inhibitors have been reported as dual inhibitors of EGFR and VEGFR 2. The aim of the present study was to find the potent and selective inhibitor of VEGFR 2 specifically for the treatment of renal cancer. Fourteen previously identified anti-inflammatory compounds i.e., 1, 3, 4 oxadiazoles derivatives by our own group were selected for their anti-cancer potential, targeting the tyrosine kinase (TK) domain of VEGFR2 and EGFR. A detailed virtual screening-based study was designed viz density functional theory (DFT) study to find the compounds' stability and reactivity, molecular docking for estimating binding affinity, SeeSAR analysis and molecular dynamic simulations to confirm protein ligand complex stability and ADMET properties to find the pharmacokinetic profile of all compounds. The DFT results suggested that among all the derivatives, the 7g, 7j, and 7l were chemically reactive and stable derivatives. The optimized structures obtained from the DFTs were further selected for molecular docking, and the results suggested that 7g, 7j and 7l derivatives as the best inhibitors of VEGFR 2 with binding energy values -46.32, -48.89 and -45.01 kJ/mol. The Estimated inhibition constant (IC50) of hit compound 7j (0.009 µM) and simulation studies of its complexes confirms its high potency and best inhibitor of VEGFR2. All the derivatives were also docked with EGFR, where they showed weak binding energies and poor interactions, important compound 7g, 7j and 7i exhibited binding energy of -31.01, -33.23 and -34.19 kJ/mol respectively. Furthermore, the anticancer potential of the derivatives was confirmed by cell viability (MTT) assay using breast cancer and cervical cancer cell lines. At the end, the results of ADMET studies confirmed these derivatives as drug like candidates. Conclusively, the current study suggested substituted oxadiazoles as the potential anticancer compounds which exhibited more selectivity towards VEGFR2 in comparison to EGFR. Therefore, the identified lead molecules can be used for the synthesis of more potent derivatives of VEGFR2, along with extensive in vitro and in vivo experiments, that can be used to treat various cancers, especially renal cancers, and to prevent angiogenesis due to aberrant expression of VEGFR2.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxidiazóis , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Teoria da Densidade Funcional , Receptores ErbB/metabolismo , Antineoplásicos/química , Estrutura Molecular , Proliferação de Células
16.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361953

RESUMO

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Assuntos
Monofenol Mono-Oxigenase , Ribonucleotídeo Redutases , Tionas/farmacologia , Simulação de Acoplamento Molecular , Acetofenonas/farmacologia , DNA
17.
ACS Omega ; 7(38): 34476-34484, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188293

RESUMO

Naringenin, one of the flavonoid components, is majorly found in and obtained from grapefruits and oranges. Naringenin also acts as a potent antioxidant, which possesses hypolipidemic as well as anti-inflammatory potential. Naringenin reduces the expressions of several inflammatory mediators, viz., NF-κB, cycloxygenase-2, and other cytokine mediators. In spite of having various biological effects, the clinical application of naringenin is restricted due to its very poor aqueous solubility. In the present study, the high-energy ball milling method was employed for the preparation of naringenin nanoparticles without using any chemical with an aim to enhance the anti-oxidant potential of naringenin. The milled naringenin nanoparticles were characterized for their physicochemical properties using scanning electron microscopy (SEM) and X-ray diffraction. Additionally, the effects of milling time and temperature were further assessed on the solubility of crude and milled naringenin samples. The antioxidant potential of milled naringenin was evaluated with various assays such as DHE, DCFDA, and cleaved caspase-3 using SH-SY5Y human neuroblastoma cells. The nanoparticle size of naringenin after milling was confirmed using SEM analysis. Crystalline peaks for milled and crude samples of naringenin also established that both the naringenin forms were in the crystalline form. The solubility of naringenin was enhanced depending on the milling time and temperature. Moreover, crude and milled naringenin were found to be cytocompatible up to doses of 120 µM each for the duration of 24 and 48 h. It was also observed that milled naringenin at the doses of 1, 2, and 5 µM significantly reduced the levels of reactive oxygen species (ROS) generated by H2O2 and exhibited superior ROS scavenging effects as compared to those of crude or un-milled forms of naringenin. Furthermore, milled naringenin at the doses of 1 and 2 µM inhibited H2O2-induced cell death, as shown by immunofluorescence staining of cleaved caspase-3 and Annexin-V PI flow cytometry analysis. Conclusively, it could be suggested that the size reduction of naringenin using high-energy ball milling techniques substantially enhanced the antioxidant potential as compared to naïve or crude naringenin, which may be attributed to its enhanced solubility due to reduced size.

18.
Cells ; 11(20)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291071

RESUMO

Autophagy plays an intricate role in paradigmatic human pathologies such as cancer, and neurodegenerative, cardiovascular, and autoimmune disorders. Autophagy regulation is performed by a set of autophagy-related (ATG) genes, first recognized in yeast genome and subsequently identified in other species, including humans. Several other genes have been identified to be involved in the process of autophagy either directly or indirectly. Studying the codon usage bias (CUB) of genes is crucial for understanding their genome biology and molecular evolution. Here, we examined the usage pattern of nucleotide and synonymous codons and the influence of evolutionary forces in genes involved in human autophagy. The coding sequences (CDS) of the protein coding human autophagy genes were retrieved from the NCBI nucleotide database and analyzed using various web tools and software to understand their nucleotide composition and codon usage pattern. The effective number of codons (ENC) in all genes involved in human autophagy ranges between 33.26 and 54.6 with a mean value of 45.05, indicating an overall low CUB. The nucleotide composition analysis of the autophagy genes revealed that the genes were marginally rich in GC content that significantly influenced the codon usage pattern. The relative synonymous codon usage (RSCU) revealed 3 over-represented and 10 under-represented codons. Both natural selection and mutational pressure were the key forces influencing the codon usage pattern of the genes involved in human autophagy.


Assuntos
Autofagia , Uso do Códon , Seleção Genética , Humanos , Autofagia/genética , Códon/genética , Uso do Códon/genética , Nucleotídeos/genética
19.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807235

RESUMO

Alpha-amylase (α-amylase) is a key player in the management of diabetes and its related complications. This study was intended to have an insight into the binding of caffeic acid and coumaric acid with α-amylase and analyze the effect of these compounds on the formation of advanced glycation end-products (AGEs). Fluorescence quenching studies suggested that both the compounds showed an appreciable binding affinity towards α-amylase. The evaluation of thermodynamic parameters (ΔH and ΔS) suggested that the α-amylase-caffeic/coumaric acid complex formation is driven by van der Waals force and hydrogen bonding, and thus complexation process is seemingly specific. Moreover, glycation and oxidation studies were also performed to explore the multitarget to manage diabetes complications. Caffeic and coumaric acid both inhibited fructosamine content and AGE fluorescence, suggesting their role in the inhibition of early and advanced glycation end-products (AGEs). However, the glycation inhibitory potential of caffeic acid was more in comparison to p-coumaric acid. This high antiglycative potential can be attributed to its additional -OH group and high antioxidant activity. There was a significant recovery of 84.5% in free thiol groups in the presence of caffeic acid, while coumaric attenuated the slow recovery of 29.4% of thiol groups. In vitro studies were further entrenched by in silico studies. Molecular docking studies revealed that caffeic acid formed six hydrogen bonds (Trp 59, Gln 63, Arg 195, Arg 195, Asp 197 and Asp 197) while coumaric acid formed four H-bonds with Trp 59, Gln 63, Arg 195 and Asp 300. Our studies highlighted the role of hydrogen bonding, and the ligands such as caffeic or coumaric acid could be exploited to design antidiabetic drugs.


Assuntos
Ácidos Cumáricos , alfa-Amilases , Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Compostos de Sulfidrila
20.
J Biomed Nanotechnol ; 18(4): 1180-1186, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854454

RESUMO

PEGylated graphene oxide nanoparticle (PEG-nGO) has been commonly used as a carrier for therapeutic drugs and vaccines, because of its unique properties, such as high solubility, more stability and increased biocompatibility in physiological solutions. This study aimed to examine the DNA damage and neurotoxicity in young mice after up to 4 h of the treatment with PEG-nGO. A single dose (5 mg/kg) of intravenous injection was administered through the tail vein of adult mice. Total genomic DNA was isolated from the control and treated animals after 1 h, 2 h, and 4 h of treatments and examined for DNA damage by diphenyl assay, DNA fragmentation Assay, and FTIR (Fourier transform infrared) techniques. DNA damage studies indicated DNA fragmentation after 1 h and 2 h of treatments followed by recovery at 4 h. FTIR analysis further supported these results and showed a detailed molecular effect of the treatments that caused single and double-strand DNA breaks at 1 to 2 h after the treatments and indicated DNA damage response and recovery at 4 h. Histopathology showed neuronal apoptosis and lesions in the brain after 1 to 2 h and invasion of inflammatory response and chromatolysis after 4 h. PEG-nGO caused immediate DNA damage and cytotoxicity to the brain and its future use as a drug carrier should be considered with caution.


Assuntos
Grafite , Nanopartículas , Animais , Dano ao DNA , Grafite/toxicidade , Camundongos , Nanopartículas/toxicidade , Polietilenoglicóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...