Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1123261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229250

RESUMO

Introduction: An active metabolite of buprenorphine (BUP), called norbuprenorphine (NorBUP), is implicated in neonatal opioid withdrawal syndrome when BUP is taken during pregnancy. Therefore, reducing or eliminating metabolism of BUP to NorBUP is a novel strategy that will likely lower total fetal exposure to opioids and thus improve offspring outcomes. Precision deuteration alters pharmacokinetics of drugs without altering pharmacodynamics. Here, we report the synthesis and testing of deuterated buprenorphine (BUP-D2). Methods: We determined opioid receptor affinities of BUP-D2 relative to BUP with radioligand competition receptor binding assays, and the potency and efficacy of BUP-D2 relative to BUP to activate G-proteins via opioid receptors with [35S]GTPγS binding assays in homogenates containing the human mu, delta, or kappa opioid receptors. The antinociceptive effects of BUP-D2 and BUP were compared using the warm-water tail withdrawal assay in rats. Blood concentration versus time profiles of BUP, BUP-D2, and NorBUP were measured in rats following intravenous BUP-D2 or BUP injection. Results: The synthesis provided a 48% yield and the product was ≥99% deuterated. Like BUP, BUP-D2 had sub-nanomolar affinity for opioid receptors. BUP-D2 also activated opioid receptors and induced antinociception with equal potency and efficacy as BUP. The maximum concentration and the area under the curve of NorBUP in the blood of rats that received BUP-D2 were over 19- and 10-fold lower, respectively, than in rats that received BUP. Discussion: These results indicate that BUP-D2 retains key pharmacodynamic properties of BUP and resists metabolism to NorBUP and therefore holds promise as an alternative to BUP.

2.
Arch Toxicol ; 97(8): 2261-2272, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209179

RESUMO

In contrast to somatic mutations, mutations in germ cells affect every cell of any organism derived from the germ cell and therefore are related to numerous genetic diseases. However, there is no suitable assay to evaluate the mutagenic sensitivities of both male and female germ cells. The main type of Caenorhabditis elegans (C. elegans) is hermaphroditic, where spermatogenesis and oogenesis occur chronologically at specific stages, allowing induction of mutations in either sperm or eggs exclusively. In this study, we used the alkylating agent ethyl methanesulfonate and N-ethyl-N-nitrosourea to induce germline mutations in C. elegans at different developmental stages and analyzed mutation frequency and mutational spectrum from data gathered using next-generation sequencing (NGS) technology. Our results revealed low spontaneous mutation rates of C. elegans, along with distinct mutagenic effects elicited by the two mutagens. Our data show that the parental worms treated during germ cell mitosis, spermatogenesis, and oogenesis resulted in different mutation frequencies in their offspring, and female germ cells could be very susceptible to mutagen exposure during oogenesis. In summary, our study indicates that the use of C. elegans and its specific chronological hermaphroditism would be a promising way to explore the sensitivities of both male and female germ cells to mutagens.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Masculino , Feminino , Caenorhabditis elegans/genética , Mutagênicos/toxicidade , Sêmen , Células Germinativas/metabolismo , Espermatogênese/genética , Sequenciamento Completo do Genoma , Proteínas de Caenorhabditis elegans/genética
3.
Environ Mol Mutagen ; 63(2): 68-75, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35224786

RESUMO

Many conventional genetic toxicology assays require specialized cell cultures or animals and can only detect mutations that inactivate the function of a reporter gene. These limitations make such assays incompatible with many toxicological models but could be overcome by the development of techniques capable of directly detecting genome-wide somatic mutations through DNA sequencing. PacBio sequencing can generate almost error-free consensus reads by repeatedly inspecting both DNA strands from circularized molecules (a method known as PacBio HiFi). In this study, we show that PacBio HiFi can detect genome-wide ultralow-frequency substitution mutations in cultures of mouse lymphoma L5178Y cells and Caenorhabditis elegans worms. The mutation frequencies (MFs) of unexposed samples in both models were ~1 × 10-7 mutations per base pair. Compared to these controls, PacBio HiFi detected MF increases of 23-fold in cultures of L5178Y cells exposed to 5 mM ethyl methanosulfonate (EMS) for 4 h, and 5-, 12-, and 29-fold in cultures of C. elegans worms exposed to 12.5, 25, and 50 mM EMS for 4 h, respectively. In both models, the mutation spectra of controls were diverse, while those derived from EMS-exposed samples were dominated by C:G → T:A transitions. To validate these results, clone sequencing analyses were performed on the same cultures of L5178Y cells. The results obtained by clone sequencing and PacBio HiFi were almost identical. Our results suggest that PacBio sequencing could be used for the detection, quantitation, and characterization of mutations in any DNA-containing sample, including those that are not compatible with conventional mutation detection approaches.


Assuntos
Caenorhabditis elegans , Linfoma , Animais , Caenorhabditis elegans/genética , Linfócitos , Camundongos , Mutação , Análise de Sequência de DNA
4.
Nanotoxicology ; 15(3): 418-432, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710943

RESUMO

The increasing medical and food applications of silver nanoparticles (AgNPs) raise concerns about their safety, including the potential health consequences of human exposure. Previous studies found that AgNPs were negative in the Ames test due to both their microbicidal activity and the inability of nanoparticles to penetrate bacterial cell walls. Thus, the mutagenicity of AgNPs is still not completely clear, though they do induce chromosome damage, as suggested by many previous genotoxicity studies. In this study, whole-genome sequencing (WGS) was used to analyze the mutagenicity of AgNPs in mouse lymphoma cells expanded from single-cell clones. The cells were treated with AgNPs, 4-nitroquinolone-1-oxide (4-NQO) as the positive control, and vehicle controls. Both AgNPs and 4-NQO significantly increased mutation frequencies over their concurrent controls by 1.12-fold and 4.89-fold with mutation rates at 4-fold and 130-fold, respectively. AgNP-induced mutations mainly occurred at G:C sites with G:C > T:A transversions, G:C > A:T transitions, and deletions as the most commonly observed mutations. AgNPs also induced higher fold changes in tandem mutations. The results suggest that the WGS mutation assay conducted here can detect the low-level mutagenicity of AgNPs, providing substantial support for the use of the WGS method as a possible alternative assay with respect to the mutagenic assessment of nanomaterials.


Assuntos
Linfoma/patologia , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Prata/química , Sequenciamento Completo do Genoma/métodos , Animais , Dano ao DNA/efeitos dos fármacos , Humanos , Linfoma/genética , Camundongos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutação/efeitos dos fármacos , Prata/toxicidade
5.
Arch Toxicol ; 94(2): 389-399, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31820026

RESUMO

Skeletal toxicity has been reported following exposure to polychlorinated biphenyl (PCB) mixtures. However, molecular mechanisms remain poorly understood. We exposed groups of male 4-5-week-old Sprague-Dawley rats to 3,3', 4, 4', 5-pentachlorobiphenyl (PCB 126), a dioxin-like coplanar PCB congener by a single i.p. injection of 5 µmol/kg in soy oil vehicle or vehicle alone. After 4 weeks, rats were euthanized. PCB exposure resulted in hypocalcemia (P < 0.05) and significant increases in serum PTH without changes in serum phosphorous. Hyperparathyroidism was accompanied by increased expression of mRNAs of vitamin D3 metabolizing cytochrome P450 enzymes CYP27B1 and CYP24 in the kidney (P < 0.05). PCB exposure also reduced body weight, serum IGF-1, and hepatic expression of mRNAs encoding the male-specific GH-pattern-regulated CYP2C11 and CYP3A2 relative to controls (P < 0.05). PCB exposure reduced long bone length, diameter, and surface area, but increased trabecular thickness and volume (P < 0.05). Serum osteocalcin (P < 0.05), a marker and a regulator of bone formation, was reduced, but PCB exposure had no effect on the bone resorption marker RatLaps. Exposure of human intestinal Caco-2 cells to 10-100 nM PCB 126 in the presence of vitamin D3 resulted in inhibition of mRNAs for the calcium transporters TRPV6 and PMCA1b (P < 0.05). In addition, PCB 126 suppressed osteoblastogenesis in primary bone marrow mesenchymal stem cell cultures which was blunted by the AhR antagonist CH-223191. These data provide novel evidence that skeletal toxicity after exposure to PCB 126 is a result of disruption of calcium homeostasis and the GH-IGF-1 axis, and involves direct AhR-mediated effects on bone formation.


Assuntos
Cálcio/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Biomarcadores/metabolismo , Células CACO-2 , Disruptores Endócrinos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Hormônio do Crescimento/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Klotho , Masculino , Ratos Sprague-Dawley , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento , beta Catenina/metabolismo
6.
JBMR Plus ; 3(9): e10201, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31667457

RESUMO

Phenolic acids (PAs) are metabolites derived from polyphenolic compounds found in fruits and vegetables resulting from the actions of gut bacteria. Previously, we reported that the levels of seven individual PAs were found to be at least 10 times higher in the serum of rats fed a blueberry (BB)-containing diet compared to those fed a control diet. We have characterized the effects of one such BB-associated serum PA, 3-(3-hydroxyphenyl)-propionic acid (PPA), on senescence signaling and promotion of mesenchymal stem cell differentiation toward osteoblasts, while suppressing adipogenesis in the stem cells. To better understand the mechanistic actions of PPA on bone formation in vivo, we administered four doses of PPA (0.1, 0.5, 1, and 5 mg/kg/day; daily i.p.) to 1-month-old female C57BL6/J mice for 30 days. We did not observe significant effects of PPA on cortical bone; however, there were significantly higher bone volume and trabecular thickness and increased osteoblastic cell number, but decreased osteoclastic cell number in PPA-treated groups compared to controls. These morphological and cellular outcomes of bone were reflected in changes of bone formation markers in serum and bone marrow plasma. PPA treatment reduced senescence signaling as evaluated by senescence-associated ß-galactosidase activity, PPARγ, p53, and p21 expression in bone. In conclusion, PPA is capable of altering the mesenchymal stem cell differentiation program and bone cell senescence. This raises the possibility that BB-rich diets promote bone growth through increasing systemic PAs, a question that merits additional investigation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
J Pharmacol Exp Ther ; 370(1): 9-17, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028107

RESUMO

Buprenorphine is the preferred treatment of opioid use disorder during pregnancy but can cause fetal opioid dependence and neonatal opioid withdrawal syndrome (NOWS). Notably, withdrawal severity is independent of maternal buprenorphine dose, suggesting that interindividual variance in pharmacokinetics may influence risk and severity of NOWS. Using a rat model of NOWS, we tested the hypothesis that clinically relevant doses of the active metabolite norbuprenorphine (NorBUP) can induce in utero opioid dependence, manifested as naltrexone-precipitated withdrawal signs in the neonate. Pregnant Long-Evans rats were implanted with 14-day osmotic minipumps containing vehicle, morphine (positive control), or NorBUP (0.3-10 mg/kg per day) on gestation day 9. By 12 hours post-delivery, an intraperitoneal injection of the opioid antagonist naltrexone (1 or 10 mg/kg) or saline was administered to pups. Precipitated withdrawal signs were graded by raters blinded to treatment conditions. In a separate group, NorBUP concentrations in maternal and fetal blood and brain on gestation day 20 were determined by liquid chromatography-tandem mass spectrometry. Steady-state maternal blood concentrations of NorBUP in dams infused with 1 or 3 mg/kg per day were comparable to values reported in pregnant humans treated with buprenorphine (1.0 and 9.6 ng/ml, respectively), suggesting a clinically relevant dosing regimen. At these doses, NorBUP increased withdrawal severity in the neonate as shown by an evaluation of 10 withdrawal indicators. These findings support the possibility that NorBUP contributes to fetal opioid dependence and NOWS following maternal buprenorphine treatment during pregnancy.


Assuntos
Buprenorfina/análogos & derivados , Buprenorfina/metabolismo , Feto/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/etiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Síndrome de Abstinência a Substâncias/etiologia , Animais , Animais Recém-Nascidos , Buprenorfina/efeitos adversos , Feminino , Gravidez , Ratos , Risco
8.
J Endocrinol ; 239(1): 33­47, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307152

RESUMO

Intrauterine or early postnatal high-fat diet (HFD) has substantial influences on adult offspring health; however, studies of HFD-induced maternal obesity on regulation of adult offspring bone formation are sparse. Here, we investigated the effects of HFD-induced maternal obesity on both fetal and adult offspring skeletal development. We found that HFD-induced maternal obesity significantly decreased fetal skeletal development, but enhanced fetal osteoblastic cell senescence signaling and significantly increased the expression of inflammatory factors of the senescence-associated secretory phenotype (SASP) in osteo-progenitors. It was found that p300/CBP activation led to H3K27 acetylation to increase the expression of senescence-related genes and PPARγ in embryonic mouse osteogenic calvarial cells from HFD obese dams. These results were recapitulated in human umbilical cord mesenchymal stem cells (UC MSCs) isolated from offspring of pregnant obese and lean mothers following delivery. Regardless of postnatal HFD challenge, adult offspring from HFD obese dams showed significantly suppressed bone formation. Such early involution of bone formation of adult offspring from HFD obese dams may at least in part due to histone acetylation, i.e., epigenetic regulation of genes involved in cell senescence signaling in pre-osteoblasts from prenatal development. These findings indicate fetal pre-osteoblastic cell senescence signaling is epigenetically regulated by maternal obesity to repress bone formation in adult offspring in rodents and suggest that at least some of these effects may also manifest in humans.


Assuntos
Desenvolvimento Ósseo , Histona Acetiltransferases/metabolismo , Obesidade/metabolismo , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Estudos de Casos e Controles , Senescência Celular , Dieta Hiperlipídica , Desenvolvimento Embrionário , Feminino , Humanos , Camundongos Endogâmicos C57BL , Gravidez
9.
J Pharmacol Exp Ther ; 366(1): 46-57, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653963

RESUMO

Chronic alcohol consumption increases bone resorption and decreases bone formation. A major component of ethanol (EtOH) pathology in bone is the generation of excess reactive oxygen species (ROS). The ROS-generating NADPH oxidase-4 (NOX4) is proposed to drive much of the EtOH-induced suppression of bone formation. Here, 13-week-old male wild-type (WT) and NOX4-/- mice were pair fed (PF) a high-fat (35%), Lieber-DeCarli liquid diet with or without EtOH at 30% of their total calories for 12 weeks. Micro-computed tomography analysis demonstrated significant decreases in trabecular bone volume/total volume (BV/TV) percentage and cortical thickness in WT, EtOH-fed mice compared with PF controls. EtOH-fed NOX4-/- mice also displayed decreased trabecular BV/TV and trabecular number compared with PF (P < 0.05). However, NOX4-/- mice were protected against EtOH-induced decreases in cortical thickness (P < 0.05) and decreases in collagen1 and osteocalcin mRNA expression in cortical bone (P < 0.05). In WT and NOX4-/- vertebral bone, EtOH suppressed expression of Wnt signaling components that promote osteoblast maturation. A role for NOX4 in EtOH inhibition of osteoblast differentiation was further demonstrated by protection against EtOH inhibition of osteoblastogenesis in ex vivo bone marrow cultures from NOX4-/-, but not p47phox-/- mice lacking active NADPH oxidase-2. However, bone marrow cultures from NOX4-/- mice formed fewer osteoblastic colonies compared with WT cultures (P < 0.05), suggesting a role for NOX4 in the maintenance of mesenchymal progenitor cell populations. These data suggest that NOX4 deletion is partially protective against EtOH effects on osteoblast differentiation, but may predispose bone to osteogenic impairments.


Assuntos
Osso Esponjoso/citologia , Deleção de Genes , NADPH Oxidase 4/deficiência , NADPH Oxidase 4/genética , Osteoblastos/citologia , Animais , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/fisiologia , Etanol/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Microtomografia por Raio-X
10.
Alcohol Clin Exp Res ; 41(1): 46-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987315

RESUMO

BACKGROUND: Chronic alcohol consumption leads to increased fracture risk and an elevated risk of osteoporosis by decreasing bone accrual through increasing osteoclast activity and decreasing osteoblast activity. We have shown that this mechanism involves the generation of reactive oxygen species (ROS) produced by NADPH oxidases. It was hypothesized that different dietary antioxidants, N-acetyl cysteine (NAC; 1.2 mg/kg/d), and α-tocopherol (Vit.E; 60 mg/kg/d) would be able to attenuate the NADPH oxidase-mediated ROS effects on bone due to chronic alcohol intake. METHODS: To study the effects of these antioxidants, female mice received a Lieber-DeCarli liquid diet containing ethanol (EtOH) with or without additional antioxidant for 8 weeks. RESULTS: Tibias displayed decreased cortical bone mineral density in both the EtOH and EtOH + antioxidant groups compared to pair-fed (PF) and PF + antioxidant groups (p < 0.05). However, there was significant protection from trabecular bone loss in mice fed either antioxidant (p < 0.05). Microcomputed tomography analysis demonstrated a significant decrease in bone volume (bone volume/tissue volume) and trabecular number (p < 0.05), along with a significant increase in trabecular separation in the EtOH compared to PF (p < 0.05). In contrast, the EtOH + NAC and EtOH + Vit.E did not statistically differ from their respective PF controls. Ex vivo histologic sections of tibias were stained for nitrotyrosine, an indicator of intracellular damage by ROS, and tibias from mice fed EtOH exhibited significantly more staining than PF controls. EtOH treatment significantly increased the number of marrow adipocytes per mm as well as mRNA expression of aP2, an adipocyte marker in bone. Only NAC was able to reduce the number of marrow adipocytes to PF levels. EtOH-fed mice exhibited reduced bone length (p < 0.05) and had a reduced number of proliferating chondrocytes within the growth plate. NAC and Vit.E prevented this (p < 0.05). CONCLUSIONS: These data show that alcohol's pathological effects on bone extend beyond decreasing bone mass and suggest a partial protective effect of the dietary antioxidants NAC and Vit.E at these doses with regard to alcohol effects on bone turnover and bone morphology.


Assuntos
Antioxidantes/administração & dosagem , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/prevenção & controle , Etanol/toxicidade , Animais , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/metabolismo , Feminino , Camundongos , Distribuição Aleatória , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
11.
J Pharmacol Exp Ther ; 358(1): 50-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189961

RESUMO

Chronic ethyl alcohol (EtOH) consumption results in reactive oxygen species (ROS) generation in bone and osteopenia due to increased bone resorption and reduced bone formation. In this study, transgenic C57Bl/6J mice overexpressing human catalase (TgCAT) were used to test whether limiting excess hydrogen peroxide would protect against EtOH-mediated bone loss. Micro-computed tomography analysis of the skeletons of 6-week-old female chow-fed TgCAT mice revealed a high bone mass phenotype with increased cortical bone area and thickness as well as significantly increased trabecular bone volume (P < 0.05). Six-week-old wild-type (WT) and TgCAT female mice were chow fed or pair fed (PF) liquid diets with or without EtOH, approximately 30% of calories, for 8 weeks. Pair feeding of WT had no demonstrable effect on the skeleton; however, EtOH feeding of WT mice significantly reduced cortical and trabecular bone parameters along with bone strength compared with PF controls (P < 0.05). In contrast, EtOH feeding of TgCAT mice had no effect on trabecular bone compared with PF controls. At 14 weeks of age, there was significantly less trabecular bone and cortical cross-sectional area in TgCAT mice than WT mice (P < 0.05), suggesting impaired normal bone accrual with age. TgCAT mice expressed less collagen1α and higher sclerostin mRNA (P < 0.05), suggesting decreased bone formation in TgCAT mice. In conclusion, catalase overexpression resulted in greater bone mass than in WT mice at 6 weeks and lower bone mass at 14 weeks. EtOH feeding induced significant reductions in bone architecture and strength in WT mice, but TgCAT mice were partially protected. These data implicate ROS signaling in the regulation of bone turnover in an age-dependent manner, and indicate that excess hydrogen peroxide generation contributes to alcohol-induced osteopenia.


Assuntos
Envelhecimento/metabolismo , Remodelação Óssea/efeitos dos fármacos , Catalase/metabolismo , Etanol/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/patologia , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Catalase/genética , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Tíbia/patologia
12.
Exp Biol Med (Maywood) ; 239(10): 1380-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24872432

RESUMO

Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy protein-associated phytoestrogens such as genistein (GEN). In this study, male mice were pair-fed (PF), a control diet, an ethanol (EtOH) diet, or EtOH diet supplemented with 250 mg/kg of GEN for 8 weeks to test if GEN protects against bone loss associated with chronic drinking. Interestingly, alcohol consumption reduced cortical area and thickness and trabecular bone volume in both EtOH and EtOH/GEN groups when compared to the corresponding PF and PF/GEN controls, P < 0.05. However, in the trabecular bone compartment, we observed a significant increase in overall trabecular bone density in the PF/GEN group compared to the PF controls. Bone loss in the EtOH-treated mice was associated with the inhibition of osteoblastogenesis as indicated by decreased alkaline phosphatase staining in ex vivo bone marrow cultures, P < 0.05. GEN supplementation improved osteoblastogenesis in the EtOH/GEN cultures compared to the EtOH group, P < 0.05. Vertebral expression of bone-formation markers, osteocalcin, and runt-related transcription factor 2 (Runx2) was also significantly up-regulated in the PF/GEN and EtOH/GEN groups compared to the PF and EtOH-treated groups. GEN supplementation also increased the expression of receptor activator of nuclear factor κ-B ligand (RANKL) in the PF/GEN, an increase that persisted in the EtOH/GEN-treated animals (P < 0.05), and increased basal hydrogen peroxide production and RANKL mRNA expression in primary bone marrow cultures in vitro, P < 0.05. These findings suggest that GEN supplementation increases the overall bone remodeling and, in the context of chronic alcohol consumption, does not protect against the oxidative stress-associated EtOH-mediated bone resorption.


Assuntos
Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/prevenção & controle , Suplementos Nutricionais , Etanol/efeitos adversos , Genisteína/administração & dosagem , Fitoestrógenos/administração & dosagem , Animais , Osso e Ossos/patologia , Dieta/métodos , Masculino , Camundongos Endogâmicos C57BL , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...