Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(26): eadg7841, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390201

RESUMO

The laser is one of the greatest inventions in history. Because of its ubiquitous applications and profound societal impact, the concept of the laser has been extended to other physical domains including phonon lasers and atom lasers. Quite often, a laser in one physical domain is pumped by energy in another. However, all lasers demonstrated so far have only lased in one physical domain. We have experimentally demonstrated simultaneous photon and phonon lasing in a two-mode silica fiber ring cavity via forward intermodal stimulated Brillouin scattering (SBS) mediated by long-lived flexural acoustic waves. This two-domain laser may find potential applications in optical/acoustic tweezers, optomechanical sensing, microwave generation, and quantum information processing. Furthermore, we believe that this demonstration will usher in other multidomain lasers and related applications.


Assuntos
Fônons , Fótons , Lasers , Pinças Ópticas , Som
2.
Opt Express ; 30(22): 39258-39268, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298881

RESUMO

Mode-group multiplexing (MGM) can increase the capacity of short-reach few-mode optical fiber communication links while avoiding complex digital signal processing. In this paper, we present the design and experimental demonstration of a novel mode-group demultiplexer (MG DeMux) using Fabry-Perot (FP) thin-film filters (TFFs). The MG DeMux supports low-crosstalk mode-group demultiplexing, with degeneracies commensurate with those of graded-index (GRIN) multimode fibers. We experimentally demonstrate this functionality by using a commercial six-cavity TFF that was intended for 100 GHz channel spaced wavelength-division multiplexing (WDM) system.

3.
Opt Lett ; 46(13): 3292-3295, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197439

RESUMO

In this work, we demonstrate a four-core multicore fiber photonic lantern tip/tilt wavefront sensor. To diagnose the low-order Zernike aberrations, we exploit the ability of the photonic lantern to encode the characteristics of a complex incoming beam at the multimode facet of the sensor to intensity distributions at the multicore fiber output. Here, we provide a comprehensive numerical analysis capable of predicting the performance of fabricated devices and experimentally demonstrate the concept. Two receiver architectures are implemented to discern tip/tilt information by (i) imaging the four-core fiber facet on a 2D detector and (ii) direct power measurement of the single mode outputs using a multicore fiber multiplexer and photodetectors. For both receiver schemes, an angular detection window of ∼0.4∘ at 1064 nm can be achieved. Our results are expected to further facilitate the development of intensity-based fiber wavefront sensors for adaptive optics systems.

4.
Appl Opt ; 60(19): D93-D99, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263831

RESUMO

The PolyOculus technology produces large-area-equivalent telescopes by using fiber optics to link modules of multiple semi-autonomous, small, inexpensive, commercial-off-the-shelf telescopes. Crucially, this scalable design has construction costs that are >10× lower than equivalent traditional large-area telescopes. We have developed a novel, to the best of our knowledge, photonic lantern approach for the PolyOculus fiber optic linkages that potentially offers substantial advantages over previously considered free-space optical linkages, including much higher coupling efficiencies. We have carried out the first laboratory tests of a photonic lantern prototype developed for PolyOculus, and demonstrated broadband efficiencies of ∼91%, confirming the outstanding performance of this technology.

6.
Nat Commun ; 11(1): 5813, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199708

RESUMO

Lossless linear wave propagation is symmetric in time, a principle which can be used to create time reversed waves. Such waves are special "pre-scattered" spatiotemporal fields, which propagate through a complex medium as if observing a scattering process in reverse, entering the medium as a complicated spatiotemporal field and arriving after propagation as a desired target field, such as a spatiotemporal focus. Time reversed waves have previously been demonstrated for relatively low frequency phenomena such as acoustics, water waves and microwaves. Many attempts have been made to extend these techniques into optics. However, the much higher frequencies of optics make for very different requirements. A fully time reversed wave is a volumetric field with arbitrary amplitude, phase and polarisation at every point in space and time. The creation of such fields has not previously been possible in optics. We demonstrate time reversed optical waves with a device capable of independently controlling all of light's classical degrees of freedom simultaneously. Such a class of ultrafast wavefront shaper is capable of generating a sequence of arbitrary 2D spatial/polarisation wavefronts at a bandwidth limited rate of 4.4 THz. This ability to manipulate the full field of an optical beam could be used to control both linear and nonlinear optical phenomena.

7.
Opt Lett ; 45(21): 5913-5916, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137034

RESUMO

Optical vector network analyzers (OVNAs) based on swept-wavelength interferometry are applied widely in optical metrology and sensing to measure the complex transfer functions of optical components, devices, and fibers. Phase noise from laser sweep nonlinearities degrades the measurement quality as the distance increases and limits the usage of the OVNA in characterizing systems with long impulse responses as required in space-division multiplexing links with a high mode count or in the presence of large modal differential group delay (DGD). In this Letter, we use a densely distributed broadband ultra-weak fiber Bragg grating array to directly measure the distortion due to phase noise at a 5-m increment up to 400 m and use this measured data to directly eliminate the distortion. We experimentally extend the measurement range of the swept-wavelength OVNA over 400 m and successfully characterize a 2-km six-mode multimode fiber link with an accumulated impulse response as wide as 20 ns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...