Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Allergy ; 76(7): 2057-2069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33486786

RESUMO

BACKGROUND: Airway hyperresponsiveness (AHR) is a feature of asthma in which airways are hyperreactive to stimuli causing extensive airway narrowing. Methacholine provocations assess AHR in asthma patients mainly by direct stimulation of smooth muscle cells. Using in vivo mouse models, mast cells have been implicated in AHR, but the mechanism behind has remained unknown. METHODS: Cpa3Cre/+ mice, which lack mast cells, were used to assess the role of mast cells in house dust mite (HDM)-induced experimental asthma. Effects of methacholine in presence or absence of ketanserin were assessed on lung function and in lung mast cells in vitro. Airway inflammation, mast cell accumulation and activation, smooth muscle proliferation, and HDM-induced bronchoconstriction were evaluated. RESULTS: Repeated intranasal HDM sensitization induced allergic airway inflammation associated with accumulation and activation of lung mast cells. Lack of mast cells, absence of activating Fc-receptors, or antagonizing serotonin (5-HT)2A receptors abolished HDM-induced trachea contractions. HDM-sensitized mice lacking mast cells had diminished lung-associated 5-HT levels, reduced AHR and methacholine-induced airway contraction, while blocking 5-HT2A receptors in wild types eliminated AHR, implying that mast cells contribute to AHR by releasing 5-HT. Primary mouse and human lung mast cells express muscarinic M3 receptors. Mouse lung mast cells store 5-HT intracellularly, and methacholine induces release of 5-HT from lung-derived mouse mast cells and Ca2+ flux in human LAD-2 mast cells. CONCLUSIONS: Methacholine activates mast cells to release 5-HT, which by acting on 5-HT2A receptors enhances bronchoconstriction and AHR. Thus, M3-directed asthma treatments like tiotropium may also act by targeting mast cells.


Assuntos
Asma , Mastócitos , Animais , Asma/diagnóstico , Asma/etiologia , Modelos Animais de Doenças , Humanos , Pulmão , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Serotonina
2.
Immunobiology ; 225(1): 151862, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711674

RESUMO

Large tissue damage or wounds cause serious comorbidities and represent a major burden for patients, families, and health systems. Due to the pivotal role of immune cells in the proper resolution of inflammation and tissue repair, we focus our current study on the interaction of macrophages with skin cells, and specifically on the effects of CD163 gene induction in macrophages in wound healing. We hypothesize that the over-expression of the scavenger receptor gene CD163 in human macrophages would result in a more efficient wound healing process. Using 3D human wounded skin organotypic tissues, we observed that CD163 overexpression in THP-1 and human primary macrophages induced a more efficient re-epithelization when compared to control cells. Using human primary skin cells and an in vitro scratch assay we observed that CD163 overexpression in THP-1 macrophages promoted a more rapid and efficient wound healing process through a unique interaction with fibroblasts. The addition of CD163-blocking antibody, but not isotype control, blocked the efficient wound healing process induced by CD163 overexpression in macrophages. We found that the co-culture of skin cells and CD163 overexpressing macrophages reduced monocyte chemoattractant protein (MCP)-1 and enhanced tumor growth factor (TGF)-α, without altering interleukin (IL)-6 or TGF-ß. Our findings show that CD163 induces a more efficient wound healing and seems to promote a wound milieu with a pro-resolution molecular profile. Our studies set the foundation to study this approach in in vivo clinically relevant settings to test its effects in wound healing processes such as acute major injuries, large surgeries, or chronic ulcers.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Fibroblastos/fisiologia , Queratinócitos/fisiologia , Macrófagos/imunologia , Receptores de Superfície Celular/metabolismo , Pele/patologia , Anticorpos Bloqueadores/metabolismo , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Quimiocina CCL2/metabolismo , Terapia Genética , Humanos , Inflamação/imunologia , Interleucina-6/metabolismo , Técnicas de Cultura de Órgãos , Receptores de Superfície Celular/imunologia , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização
3.
Science ; 365(6450)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31320508

RESUMO

Inositol-requiring enzyme 1[α] (IRE1[α])-X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α-XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2) and prostaglandin E synthase (Ptges/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE2), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human PTGS2 and PTGES genes to enable optimal PGE2 production. Mice that lack IRE1α-XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE2-dependent models of pain. Thus, IRE1α-XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.


Assuntos
Dinoprostona/biossíntese , Endorribonucleases/metabolismo , Leucócitos/metabolismo , Dor Pós-Operatória/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Dor Visceral/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Células Cultivadas , Ciclo-Oxigenase 2/genética , Endorribonucleases/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Dor Pós-Operatória/genética , Regiões Promotoras Genéticas , Prostaglandina-E Sintases/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Resposta a Proteínas não Dobradas , Dor Visceral/genética , Proteína 1 de Ligação a X-Box/genética
4.
J Pain Res ; 12: 69-81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30588081

RESUMO

INTRODUCTION: Monocytes from patients with diabetes mellitus type 2 (DM2) are dysfunctional, persistently primed, and prone to a proinflammatory phenotype. This may alter the phenotype of their differentiation to macrophages and result in diabetic peripheral neuropathy (DPN), nerve damage, nerve sensitization, and chronic pain. We have previously demonstrated that CD163 is a molecule that promotes an anti-inflammatory cellular phenotype in human primary macrophages, but this has not been proven in macrophages from patients with DM2 or DPN. Thus, we hypothesize that macrophages from patients with DM2 or DPN display an altered proinflammatory functional phenotype related to cytokine production and that the induction of CD163 expression will promote a more homeostatic phenotype by reducing their proinflammatory responsiveness. PATIENTS AND METHODS: We tested these hypotheses in vitro using blood monocyte-derived macrophages from healthy subjects and patients with DM2 with and without DPN. Cells were incubated in the presence or the absence of 5 µg/mL of lipopolysaccharide (LPS). The concentrations of interleukin-10, interleukin-6, tumor necrosis factor-alpha (TNF-α), TGF-ß, and monocyte chemoattractant protein-1 (MCP-1) were measured using ELISA assays. Macrophages were transfected with an empty vector plasmid or a plasmid containing the CD163 gene using mannosylated polyethylenimine nanoparticles. RESULTS: Our results show that nonstimulated DM2 or DPN macrophages have a constitutive primed proinflammatory state and display a deficient production of proinflammatory cytokines upon a proinflammatory challenge when compared to healthy macrophages. CD163 induction produced an anti-inflammatory phenotype in the healthy control group, and this effect was partial in DM2 or DPN macrophages. CONCLUSION: Our results suggest that diabetic macrophages adopt a complex phenotype that is only partially reversed by CD163 induction. Future experiments are focused on elucidating this differential responsiveness between healthy and diabetic macrophages.

5.
J Pain Res ; 11: 1769-1778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237731

RESUMO

INTRODUCTION: Painful diabetic neuropathy is associated with chronic inflammation, in which macrophages are the key effectors. We utilized an in vitro approach to determine the effects of high glucose on macrophage phenotype. MATERIALS AND METHODS: We exposed human THP-1 macrophages to normal glucose (5 mM) and a clinically relevant high glucose environment (15 mM) and measured the expression and concentration of molecules associated with a diabetic cellular phenotype. RESULTS: We found that THP-1 macrophages in high glucose conditions did not influence the basal expression of cyclooxygenase-2, Toll-like receptor-4, or class A scavenger receptor mRNA, or the concentrations of the cytokines interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and IL-10, but induced a priming effect on tumor necrosis factor (TNF)-α. Then, we stimulated THP-1 macrophages with a strong pro-inflammatory stimulus lipopolysaccharide (LPS; 5 µg/mL). After stimulation with LPS, we observed an exacerbated increase in TNF-α, IL-6, and MCP-1 concentration in the high glucose condition compared to the normal glucose environment. THP-1 macrophages in high glucose conditions developed tolerance to IL-10 anti-inflammatory effects (TNF-α production) when challenged with LPS. CONCLUSION: Our in vitro approach allows the study of macrophages as potential targets for therapeutic purposes since it compares them to primary human macrophages exposed to high glucose and macrophages from patients with diabetes or complications of painful diabetic neuropathy (i.e. ulcers, adipocytes, and pancreas).

6.
Immunobiology ; 222(8-9): 900-912, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28545809

RESUMO

M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1ß, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive and practical approach for inflammatory conditions that could lead to persistent pain, i.e. major surgeries, burns, rheumatoid arthritis, etc.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Receptores de Superfície Celular/imunologia , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , DNA Complementar , Humanos , Lectinas Tipo C , Ligantes , Lipopolissacarídeos/farmacologia , Receptor de Manose , Lectinas de Ligação a Manose , Monócitos/citologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanotecnologia , Fenótipo , Plasmídeos , Polietilenoimina/química , Receptores de Superfície Celular/genética , Transfecção
7.
J Pain Res ; 10: 763-774, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405172

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatase-3 (MKP-3) and its substrates (extracellular signal-regulated kinase [ERK] and p38) play an important role in pathophysiological mechanisms of acute postoperative and chronic neuropathic pain in the spinal cord. This study aimed to understand the role of MKP-3 and its target MAPKs at the site of surgical incision in nociceptive behavior. Wild-type (WT) and MKP-3 knockout (KO) mice underwent unilateral plantar hind paw incision. Mechanical allodynia was assessed by using von Frey filaments. Peripheral ERK-1/2 and p38 phosphorylation were measured by Western blot. Cell infiltration was determined using hematoxylin and eosin histological staining. Peripheral phosphorylated ERK-1/2 (p-ERK-1/2) inhibition was performed in MKP-3 KO mice. In WT mice, mechanical hypersensitivity was observed on postoperative day 1 (0.69±0.17 g baseline vs 0.13±0.08 g day 1), which resolved normally by postoperative day 12 (0.46±0.08 g, N=6). In MKP-3 KO mice, this hypersensitivity persisted at least 12 days after surgery (0.19±0.06 g; N=6). KO mice displayed higher numbers of infiltrating cells (51.4±6 cells/0.1 mm2) than WT mice (8.7±1.2 cells/0.1 mm2) on postoperative day 1 (vs 5-6 cells/0.1 mm2 at baseline) that returned to baseline 12 days after surgery (10-12 cells/0.1 mm2). In WT mice, peripheral p-p38 and p-ERK-1/2 expression increased (5- and 3-fold, respectively) on postoperative days 1 and 5, and returned to basal levels 7-12 days after surgery (N=3 per group). Peripheral p-p38 levels in MKP-3 KO mice followed a similar expression pattern as WT mice. Peripheral p-ERK-1/2 levels in MKP-3 KO mice remained elevated 12 days after surgery (2.5-fold, N=3 per group). Administration of PD98059 (MEK inhibitor, N=8, vehicle N=9) reduced p-ERK-1/2 expression in the incised tissue and blocked hypersensitivity in MKP-3 KO mice (N=6). The findings of this study suggest that MKP-3 is pivotal for normal resolution of acute postoperative allodynia, through the regulation of peripheral p-ERK-1/2.

8.
Drug Dev Res ; 75(7): 438-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25043808

RESUMO

This study was performed to evaluate whether early, middle, or late treatment of zoledronate, an approved bisphosphonate that blocks bone resorption, can reduce nociceptive behaviors in a mouse arthritis model. Arthritis was produced by repeated intra-articular knee injections of complete Freund's adjuvant (CFA). A dose-response curve with zoledronate (3, 30, 100, and 300 µg/kg, i.p., day 4 to day 25, twice weekly for 3 weeks) was performed, and the most effective dose of zoledronate (100 µg/kg, i.p.) was initially administered at different times of disease progression: day 4 (early), day 15 (middle), or day 21 (late) and continued until day 25 after the first CFA injection. Flinching of the injected extremity (spontaneous nociceptive behavior), vertical rearings and horizontal activity (functional outcomes), and knee edema were assessed. Zoledronate improved both functional outcomes and reduced flinching behavior. At day 25, the effect of zoledronate on flinching behavior and vertical rearings was greater in magnitude when it was given early or middle rather than late in the treatment regimen. Chronic zoledronate did not reduce knee edema in CFA-injected mice nor functional outcomes in naïve mice by itself. These results suggest that zoledronate may have a positive effect on arthritis-induced nociception and functional disabilities.


Assuntos
Artrite Experimental/complicações , Artrite Experimental/tratamento farmacológico , Difosfonatos/administração & dosagem , Difosfonatos/uso terapêutico , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Atividade Motora/efeitos dos fármacos , Dor Nociceptiva/complicações , Dor Nociceptiva/tratamento farmacológico , Animais , Artrite Experimental/induzido quimicamente , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Edema/complicações , Edema/tratamento farmacológico , Adjuvante de Freund , Imidazóis/farmacologia , Masculino , Camundongos , Medição da Dor/efeitos dos fármacos , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...