Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 215: 389-397, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30856583

RESUMO

Interactions between the antibiotic peptide nisin and multilamellar vesicles of phosphoglycerol lipids in different phase-states were studied using vibrational spectroscopy. The infrared amide I' band of nisin, both in solution and in the membrane-bound state, was analyzed in the temperature range comprised between 20 and 60 °C in order to study its conformational behavior. Nisin presented mainly unordered and ß-turns conformations. Their relative populations varied according to the environment and as the temperature increased: ß turns were more favored in the membrane-bound state than in solution, but at higher temperatures the disordered conformation was dominant in both states. Spectral changes of specific infrared bands belonging to the hydrocarbon and polar moieties of lipids were also analyzed to evaluate the perturbation of the lipid membrane order. Nisin interactions with the membrane polar region induced a high restriction to water incorporation, promoting a small increase in the temperature of the lipid phase transition. Raman spectra of nisin/phosphoglycerol systems at ambient temperature were also analyzed. They revealed that the peptide incorporation to a membrane in the fluid phase caused drastic structural modifications in the hydrophobic region of the bilayer. Although nisin may be able to disrupt the hydrophobic portion of the bilayer in the gel phase, the most of the peptide molecule remained at the membrane surface interacting with the polar headgroups. This work provides evidence of a differential effect of nisin on anionic membranes, depending on the phase-state of the lipid.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Nisina/química , Nisina/metabolismo , Análise Espectral Raman/métodos , Ânions , Modelos Biológicos , Vibração
2.
Artigo em Inglês | MEDLINE | ID: mdl-23694898

RESUMO

A better understanding of the structural effects induced by thyroid hormones in model membranes is attained by Raman spectroscopy. The interactions of T3 and T4 with multilamellar vesicles of dipalmytoylphosphatidylcholine (DPPC) in the gel phase are characterized by analyzing the spectral behavior of the C-H and C-C stretching vibrations of the acyl chains. The spectra evidence an increase in the relative number of gauche conformation, which indicates the hormones are able to penetrate into the hydrophobic region of the bilayer and partially alter the lipid structure. In addition, the density packing of the acyl chains appears increased and the rotational mobility of the terminal methylene groups is slightly reduced in the iodothyronine/DPPC mixtures. These effects are interpreted in terms of the transition to an interdigitated phase due to the hormone incorporation to the membrane. The polar heads of the lipids also interact with the hormone, as evidenced by the PO2(-) symmetric stretching band.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Lipossomos/metabolismo , Tironinas/metabolismo , Tiroxina/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Lipossomos/química , Análise Espectral Raman/métodos
3.
Biochim Biophys Acta ; 1830(6): 3570-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23458682

RESUMO

BACKGROUND: Thyroxine-binding globulin (TBG) is a non-inhibitory member of the serpin family of proteins whose main structural element is the reactive center loop (RCL), that, upon cleavage by proteases, is inserted into the protein core adopting a ß-strand conformation (stressed to relaxed transition, S-to-R). After S-to-R transition thyroxine (T4) affinity decreases. However, crystallographic studies in the presence or absence of the hormone in different states are unable to show significant differences in the structure and interactions of the binding site. Experimental results also suggest the existence of several S states (differing in the number of inserted RCL residues), associated with a differential affinity. METHODS: To shed light into the molecular basis that regulates T4 affinity according to the degree of RCL insertion in TBG, we performed extended molecular dynamics simulations combined with several thermodynamic analysis of the T4 binding to TBG in three different S states, and in the R state. RESULTS: Our results show that, despite T4 binding in the protein by similar interactions in all states, a good correlation between the degree of RCL insertion and the binding affinity, driven by a change in TBG conformational entropy, was observed. CONCLUSION: TBG allosteric regulation is entropy driven. The presence of multiple S states may allow more efficient T4 release due to protease activity. GENERAL SIGNIFICANCE: The presented results are clear examples of how computer simulation methods can reveal the thermodynamic basis of allosteric effects, and provide a general framework for understanding serpin allosteric affinity regulation.


Assuntos
Globulina de Ligação a Tiroxina/química , Tiroxina/química , Regulação Alostérica/fisiologia , Sítios de Ligação , Cristalografia por Raios X , Entropia , Humanos , Estrutura Secundária de Proteína , Tiroxina/metabolismo , Globulina de Ligação a Tiroxina/metabolismo
4.
Free Radic Res ; 43(6): 553-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19431060

RESUMO

The singlet oxygen (1O2) quenching and free radical (DPPH(*), ABTS(* +) and O2(* -)) scavenging ability of three structurally-related flavonoids (7-hydroxyflavanone HF, 2',4'-dihydroxychalcone DHC and 3,7-dihydroxyflavone DHF) present in the Argentinean native shrub Zuccagnia punctata Cav. were studied in solution by combining electrochemical and kinetic measurements, mass spectroscopy, end-point antioxidant assays and computational calculations. The results showed that the antioxidant properties of these flavonoids depend on several factors, such as their electron- and hydrogen atom donor capacity, the ionization degree of the more acidic group, solvatation effects and electrostatic interactions with the oxidant species. The theoretical calculations for both the gas and solution phases at the B3LYP level of theory for the Osanger reaction field model agreed with the experimental findings, thus supporting the characterization of the antioxidant mechanism of the Z. punctata flavonoids.


Assuntos
Antioxidantes/química , Fabaceae/química , Flavonoides/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Oxigênio Singlete
5.
J Phys Chem A ; 111(11): 2243-7, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17388270

RESUMO

The molecular structure and conformational properties of N-pentafluorosulfur(sulfuroxide difluoride imide), SF5N=S(O)F2, have been studied by vibrational spectroscopy (IR (gas) and Raman (liquid)), by gas electron diffraction (GED), and by quantum chemical calculations (MP2 and B3LYP with (6-31G(d) and 6-311+G(2df) basis sets). According to GED, the prevailing conformer possesses a syn structure (N-SF5 bond synperiplanar with respect to the bisector of the SF2 group). Splitting of the symmetric N=S=O stretching vibration in gas and liquid spectra demonstrates the presence of a second conformer (11(5)%) with anticlinal orientation of the N-SF5 bond according to quantum chemical calculations. The geometric structure, conformational properties, and vibrational frequencies are well reproduced by quantum chemical calculations.


Assuntos
Óxidos de Enxofre/química , Elétrons , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Análise Espectral Raman , Vibração
6.
Inorg Chem ; 44(21): 7590-4, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16212385

RESUMO

The molecular structure of N-methyl-S,S-bis(trifluoromethyl)sulfimide, CH3N=S(CF3)2, was determined by gas electron diffraction and quantum chemical calculations [B3LYP and MP2 with 6-31+G(2df,p) basis sets]. Furthermore, vibrational spectra, IR (gas) and Raman (liquid), were recorded. These spectra were assigned by comparison with analogous molecules and with calculated frequencies and intensities (HF, B3LYP, and MP2 with 6-311G basis sets). All experimental data and computational methods result in a single conformer with syn orientation of the CH3 group relative to the bisector of the two CF3 groups. The molecule possesses C1 symmetry, slightly distorted from CS symmetry. The N=S bond length in this compound [1.522(10) A] is longer than that in imidosulfur difluorides RN=SF2 [1.476(4) A - 1.487(5) A].

7.
Inorg Chem ; 42(13): 4071-5, 2003 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12817963

RESUMO

The IR (gas) and Raman (liquid) spectra of FC(O)NSCl(2) demonstrate the presence of a conformational mixture in both phases. According to a gas electron diffraction study, the main conformer (94(8)%) possesses a syn-syn structure (C(O)F group synperiplanar with respect to the SCl(2) bisector and the C=O bond synperiplanar to the N=S bond). Quantum chemical calculations (HF, B3LYP and MP2 with 6-31G basis set, and MP2/6-311(2df)) predict a syn-anti structure for the second conformer. Analysis of the IR (gas) spectrum results in a contribution of 5(1)% of the minor form, corresponding to a Gibbs free energy difference DeltaG degrees = G degrees (syn-anti) - G degrees (syn-syn) = 1.75(15) kcal/mol. This value is reproduced very well by quantum chemical calculations, which include electron correlation effects (DeltaG degrees = 1.28-1.56 kcal/mol). The HF approximation overestimates this energy difference (DeltaG degrees = 3.24 kcal/mol).

8.
Eur Biophys J ; 31(6): 448-53, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12355254

RESUMO

Comparison of the Raman spectra of thyroxine ( L-3,3',5,5'-tetraiodothyronine) in the pure state and in a 1:5 mixture with phosphatidylcholine reveals spectral differences that reflect structural changes of thyroxine induced by interactions with the phospholipid. These structural changes could be localized in specific parts of the thyroxine molecule on the basis of a vibrational analysis that was carried out by density functional calculations with the B3LYP hybrid functional applying the SDD effective core potential basis set. The calculated (and subsequently scaled) frequencies reveal a good agreement with the experimental data, which together with calculated IR and Raman intensities allow a plausible assignment of most of the IR and Raman bands. Thus, it is found that modes localized in the aromatic beta-ring and in the ether group as well as the C-I stretching modes of ring alpha are affected upon lipid interactions, indicating that thyroxine interacts with the phosphatidylcholine bilayer via penetration of the hydrophobic part of the molecule.


Assuntos
Fosfatidilcolinas/química , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Tiroxina/química , Gema de Ovo/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Fosfolipídeos/química , Conformação Proteica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...