Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769595

RESUMO

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.

2.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397799

RESUMO

Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.

3.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067316

RESUMO

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Assuntos
Córtex Cerebral , Proteínas do Tecido Nervoso , Neurônios , Proteína Reelina , Animais , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Neurônios GABAérgicos/enzimologia , Hipocampo/embriologia , Hipocampo/enzimologia , Interneurônios/enzimologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Proteína Reelina/genética , Proteína Reelina/metabolismo
4.
IEEE Trans Biomed Circuits Syst ; 15(5): 960-977, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34460384

RESUMO

This paper presents a low-power, low-noise microsystem for the recording of neural local field potentials or intracranial electroencephalographic signals. It features 32 time-multiplexed channels at the electrode interface and offers the possibility to spatially delta encode data to take advantage of the large correlation of signals captured from nearby channels. The circuit also implements a mixed-signal voltage-triggered auto-ranging algorithm which allows to attenuate large interferers in digital domain while preserving neural information. This effectively increases the system dynamic range and avoids the onset of saturation. A prototype, fabricated in a standard 180 nm CMOS process, has been experimentally verified in-vitro with cellular cultures of primary cortical neurons from mice. The system shows an integrated input-referred noise in the 0.5-200 Hz band of 1.4 µVrms for a spot noise of about 85 nV /√{Hz}. The system draws 1.5 µW per channel from 1.2 V supply and obtains 71 dB + 26 dB dynamic range when the artifact-aware auto-ranging mechanism is enabled, without penalising other critical specifications such as crosstalk between channels or common-mode and power supply rejection ratios.


Assuntos
Artefatos , Neurônios , Algoritmos , Amplificadores Eletrônicos , Animais , Fontes de Energia Elétrica , Eletrodos , Desenho de Equipamento , Camundongos , Processamento de Sinais Assistido por Computador
5.
Theranostics ; 11(14): 6983-7004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093866

RESUMO

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliose/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas Correpressoras/antagonistas & inibidores , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/metabolismo , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/genética , Histona Desmetilases/antagonistas & inibidores , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , RNA Interferente Pequeno , RNA-Seq
6.
Brain Struct Funct ; 226(5): 1479-1495, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33792787

RESUMO

Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.


Assuntos
Ansiedade , Interneurônios , Adaptação Psicológica , Animais , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Receptores de Ácidos Lisofosfatídicos/genética
7.
Front Cell Neurosci ; 13: 204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156392

RESUMO

Radiotherapy is a highly effective tool for the treatment of brain cancer. However, radiation also causes detrimental effects in the healthy tissue, leading to neurocognitive sequelae that compromise the quality of life of brain cancer patients. Despite the recognition of this serious complication, no satisfactory solutions exist at present. Here we investigated the effects of intranasal administration of human mesenchymal stem cells (hMSCs) as a neuroprotective strategy for cranial radiation in mice. Our results demonstrated that intranasally delivered hMSCs promote radiation-induced brain injury repair, improving neurological function. This intervention confers protection against inflammation, oxidative stress, and neuronal loss. hMSC administration reduces persistent activation of damage-induced c-AMP response element-binding signaling in irradiated brains. Furthermore, hMSC treatment did not compromise the survival of glioma-bearing mice. Our findings encourage the therapeutic use of hMSCs as a non-invasive approach to prevent neurological complications of radiotherapy, improving the quality of life of brain tumor patients.

8.
Neuron ; 98(1): 75-89.e5, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29551491

RESUMO

Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.


Assuntos
Doença de Alzheimer/metabolismo , Ondas Encefálicas/fisiologia , Encéfalo/metabolismo , Cognição/fisiologia , Interneurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/biossíntese , Potenciais de Ação/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Animais , Encéfalo/cirurgia , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/cirurgia , Humanos , Interneurônios/transplante , Locomoção/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética
9.
J Tissue Eng Regen Med ; 12(4): e1950-e1961, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29222849

RESUMO

Ataxias are locomotor disorders that can have an origin both neural and muscular, although both impairments are related. Unfortunately, ataxia has no cure, and the current therapies are aimed at motor re-education or muscular reinforcement. Nevertheless, cell therapy is becoming a promising approach to deal with incurable neural diseases, including neuromuscular ataxias. Here, we have used a model of ataxia, the Purkinje Cell Degeneration (PCD) mutant mouse, to study the effect of healthy (wild-type) bone marrow transplantation on the restoration of defective mobility. Bone marrow transplants (from both mutant and healthy donors) were performed in wild-type and PCD mice. Then, a wide battery of behavioural tests was employed to determine possible motor amelioration in mutants. Finally, cerebellum, spinal cord, and muscle were analysed to study the integration of the transplant-derived cells and the origin of the behavioural changes. Our results demonstrated that the transplant of wild-type bone marrow restores the mobility of PCD mice, increasing their capabilities of movement (52-100% of recovery), exploration (20-71% of recovery), speed (35% of recovery), and motor coordination (25% of recovery). Surprisingly, our results showed that bone marrow transplant notably improves the skeletal muscle structure, which is severely damaged in the mutants, rather than ameliorating the central nervous system. Although a multimodal effect of the transplant is not discarded, muscular improvements appear to be the basis of this motor recovery. Furthermore, the results from our study indicate that bone marrow stem cell therapy can be a safe and effective alternative for dealing with movement disorders such as ataxias.


Assuntos
Ataxia/fisiopatologia , Ataxia/terapia , Transplante de Medula Óssea , Atividade Motora , Aloenxertos , Animais , Ataxia/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Mutantes
10.
Dis Model Mech ; 10(3): 323-336, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28138095

RESUMO

Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.


Assuntos
Adaptação Fisiológica , Cocaína/efeitos adversos , Hipocampo/patologia , Interneurônios/patologia , Transtornos da Memória/complicações , Neurogênese , Síndrome de Abstinência a Substâncias/complicações , Ácido gama-Aminobutírico/metabolismo , Envelhecimento/patologia , Animais , Comportamento Animal , Transtornos Cognitivos/complicações , Transtornos Cognitivos/fisiopatologia , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Emoções , Comportamento Exploratório , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
11.
PLoS One ; 12(1): e0170776, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122047

RESUMO

Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Criopreservação/métodos , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Eminência Mediana/citologia , Células-Tronco Neurais/citologia , Animais , Técnicas de Cultura de Células , Forma Celular/fisiologia , Sobrevivência Celular/fisiologia , Crioprotetores , Camundongos
12.
Brain Inj ; 29(3): 380-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25384090

RESUMO

UNLABELLED: Abstract Introduction: Traumatic brain injury is a main cause of disability and death in developed countries, above all among children and adolescents. The intrinsic inability of the central nervous system to efficiently repair traumatic injuries renders transplantation of bone marrow-derived cells (BMDC) a promising approach towards repair of brain lesions. On the other hand, many studies have reported the beneficial effect of Lipoic acid (LA), a potent antioxidant promoting cell survival, angiogenesis and neuroregeneration. METHODS: In this study, the cortex of adult mice was cryo-injured in order to mimic local traumatic brain injury. Vehicle or freshly prepared BMDC were grafted in the cerebral penumbra area 24 hours after unilateral local injury alone or combined with intra-peritoneal LA administration as a new regenerative strategy. RESULTS: Differences were found in the process of cell proliferation, angiogenesis and glial scar formation after local injury depending of the applied treatment, either LA or BMDC alone or in combination. CONCLUSION: The data presented here suggest that transplantation of BMDC is a good alternative and valid strategy to treat a focal brain injury when LA could not be prescribed due to its non-desired secondary effects.


Assuntos
Indutores da Angiogênese/farmacologia , Células da Medula Óssea , Transplante de Medula Óssea , Lesões Encefálicas/terapia , Ácido Tióctico/farmacologia , Animais , Transplante de Medula Óssea/métodos , Lesões Encefálicas/patologia , Proliferação de Células , Masculino , Camundongos , Camundongos Transgênicos
13.
Mol Neurobiol ; 48(1): 217-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23606281

RESUMO

The migratory route of neural progenitor/precursor cells (NPC) has a central role in central nervous system development. Although the role of the chemokine CXCL12 in NPC migration has been described, the intracellular signaling cascade involved remains largely unclear. Here we studied the molecular mechanisms that promote murine NPC migration in response to CXCL12, in vitro and ex vivo. Migration was highly dependent on signaling by the CXCL12 receptor, CXCR4. Although the JAK/STAT pathway was activated following CXCL12 stimulation of NPC, JAK activity was not necessary for NPC migration in vitro. Whereas CXCL12 activated the PI3K catalytic subunits p110α and p110ß in NPC, only p110ß participated in CXCL12-mediated NPC migration. Ex vivo experiments using organotypic slice cultures showed that p110ß blockade impaired NPC exit from the medial ganglionic eminence. In vivo experiments using in utero electroporation nonetheless showed that p110ß is dispensable for radial migration of pyramidal neurons. We conclude that PI3K p110ß is activated in NPC in response to CXCL12, and its activity is necessary for immature interneuron migration to the cerebral cortex.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Animais , Ativação Enzimática/efeitos dos fármacos , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Interneurônios/enzimologia , Janus Quinases/metabolismo , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
14.
Br J Pharmacol ; 167(6): 1311-28, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22747838

RESUMO

BACKGROUND AND PURPOSE: MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. EXPERIMENTAL APPROACH: We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. KEY RESULTS: According to our results, supplementation with riboflavin or coenzyme Q(10) effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. CONCLUSIONS AND IMPLICATIONS: Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment.


Assuntos
Fibroblastos , Síndrome MELAS/tratamento farmacológico , Modelos Biológicos , Saccharomyces cerevisiae , Autofagia/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Genes Mitocondriais/genética , Humanos , Mutação , RNA de Transferência de Leucina/genética , Espécies Reativas de Oxigênio , Riboflavina/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
15.
Traffic ; 13(10): 1393-410, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22758778

RESUMO

ß-Amyloid (Aß) peptides are generated from the successive proteolytic processing of the amyloid precursor protein (APP) by the ß-APP cleaving enzyme (BACE or ß-secretase) and the γ-secretase complex. Initial cleavage of APP by BACE leads into the amyloidogenic pathway, causing or exacerbating Alzheimer's disease. Therefore, their intracellular traffic can determine how easily and frequently BACE has access to and cleaves APP. Here, we have used polarized Madin-Darby canine kidney (MDCK) cells stably expressing APP and BACE to examine the regulation of their polarized trafficking by retromer, a protein complex previously implicated in their endosome-to-Golgi transport. Our data show that retromer interacts with BACE and regulates its postendocytic sorting in polarized MDCK cells. Depleting retromer, inhibiting retromer function, or preventing BACE interaction with retromer, alters trafficking of BACE, which thereby increases its localization in the early endocytic compartment. As a result, this slows endocytosis of apically localized BACE, promoting its recycling and apical-to-basolateral transcytosis, which increases APP/BACE interaction and subsequent cleavage of APP toward generation and secretion of Aß peptides.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Endocitose , Proteínas de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular , Cães , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Complexos Multiproteicos/metabolismo , Mutação , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
16.
Neural Plast ; 2011: 384216, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21766042

RESUMO

Numerous neurological disorders are caused by a dysfunction of the GABAergic system that impairs or either stimulates its inhibitory action over its neuronal targets. Pharmacological drugs have generally been proved very effective in restoring its normal function, but their lack of any sort of spatial or cell type specificity has created some limitations in their use. In the last decades, cell-based therapies using GABAergic neuronal grafts have emerged as a promising treatment, since they may restore the lost equilibrium by cellular replacement of the missing/altered inhibitory neurons or modulating the hyperactive excitatory system. In particular, the discovery that embryonic ganglionic eminence-derived GABAergic precursors are able to disperse and integrate in large areas of the host tissue after grafting has provided a strong rationale for exploiting their use for the treatment of diseased brains. GABAergic neuronal transplantation not only is efficacious to restore normal GABAergic activities but can also trigger or sustain high neuronal plasticity by promoting the general reorganization of local neuronal circuits adding new synaptic connections. These results cast new light on dynamics and plasticity of adult neuronal assemblies and their associated functions disclosing new therapeutic opportunities for the near future.


Assuntos
Encéfalo/fisiologia , Doenças do Sistema Nervoso/terapia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transplante de Células-Tronco/métodos , Ácido gama-Aminobutírico/metabolismo , Humanos , Regeneração
17.
Adv Exp Med Biol ; 713: 161-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21432019

RESUMO

Cell fusion is a natural process implicated in normal development, immune response, tissue formation, and with a prominent role in stem cell plasticity. The discovery that bone marrow stem cells fuse with several cell types, under normal condition or after an injury, introduces new possibilities in regenerative medicine and genetic repair. Cell fusion has been shown to be implicated in regeneration, and the complementation of recessive mutations affecting the liver, brain, muscle, lung and gut, under appropriate conditions. However, we should be cautious and better understand the mechanisms that govern cell fusion during regeneration before to consider it as clinically relevant. In this chapter, we will present the current evidences about the role of cell fusion in tissue regeneration and its future potential as therapy. Cell fusion is an exciting and promising research field. In addition, we will review the challenges that should face the fusion process to become therapeutically effective and safe.


Assuntos
Fusão Celular , Regeneração/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Medicina Regenerativa , Células-Tronco/citologia , Células-Tronco/fisiologia , Transgenes
18.
Cell Transplant ; 20(8): 1179-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21294954

RESUMO

Many studies have reported the contribution of bone marrow-derived cells (BMDC) to the CNS, raising the possibility of using them as a new source to repair damaged brain tissue or restore neuronal function. This process has mainly been investigated in the cerebellum, in which a degenerative microenvironment has been suggested to be responsible for its modulation. The present study further analyzes the contribution of BMDC to different neural types in other adult brain areas, under both physiological and neurodegenerative conditions, together with the mechanisms of plasticity involved. We grafted genetically marked green fluorescent protein/Cre bone marrow in irradiated recipients: a) the PCD (Purkinje Cell Degeneration) mutant mice, suffering a degeneration of specific neuronal populations at different ages, and b) their corresponding healthy controls. These mice carried the conditional lacZ reporter gene to allow the identification of cell fusion events. Our results demonstrate that BMDC mainly generate microglial cells, although to a lesser extent a clear formation of neuronal types also exists. This neuronal recruitment was not increased by the neurodegenerative processes occurring in PCD mice, where BMDC did not contribute to rescuing the degenerated neuronal populations either. However, an increase in the number of bone marrow-derived microglia was found along the life span in both experimental groups. Six weeks after transplantation more bone marrow-derived microglial cells were observed in the olfactory bulb of the PCD mice compared to the control animals, where the degeneration of mitral cells was in process. In contrast, this difference was not observed in the cerebellum, where Purkinje cell degeneration had been completed. These findings demonstrated that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow, but also provide the first evidence that BMDC can contribute simultaneously to different encephalic areas through different mechanisms of plasticity: cell fusion for Purkinje cells and differentiation for olfactory bulb interneurons.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Sistema Nervoso Central/patologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Animais , Sistema Nervoso Central/fisiopatologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Microscopia de Fluorescência , Degeneração Neural/patologia , Degeneração Neural/terapia
19.
Epilepsia ; 51 Suppl 3: 66-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618404

RESUMO

gamma-Aminobutyric acid (GABA) has an important role in the mechanism of epilepsy. Cell grafts from different sources have been performed to modulate local circuits or increase GABAergic inhibition in animal models of epilepsy. Among the different transplanted cell types, the medial ganglionic eminence (MGE)-derived cells present the best properties to be used in cell-based therapy. In this work we review previous experiences with these cells. In addition, we present new evidence showing their ability to modulate the levels of inhibition in the host brain of mice with alterations in the GABAergic system, caused by the specific ablation of hippocampal interneurons. Grafted GFP(+) MGE-derived cells occupied the area of ablation and differentiated into mature NK-1-, SOM-, PV-, CR-, and NPY-expressing interneurons. Inhibitory postsynaptic current (IPSC) frequency and amplitude on CA1 pyramidal cells of the ablated hippocampus significantly increased after transplantation, reaching levels similar to controls. Our data strongly suggest the suitability of MGE-derived cells for the treatment of neurologic conditions for which an increase or modulation of synaptic inhibition is required.


Assuntos
Células-Tronco Embrionárias/transplante , Epilepsia/cirurgia , Hipocampo/fisiopatologia , Telencéfalo/citologia , Animais , Movimento Celular , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/fisiopatologia , Interneurônios/fisiologia , Camundongos , Ratos , Receptores de GABA/fisiologia , Sinapses/fisiologia , Telencéfalo/embriologia
20.
Epilepsia ; 51 Suppl 3: 71-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618405

RESUMO

Most of the gamma-aminobutyric acid (GABA)ergic interneurons in the cerebral cortex originate from restricted regions of the ventral telencephalon known as the caudal and medial ganglionic eminence (MGE) and from the preoptic area. It is well established that dysfunction of GABAergic interneurons can lead to epilepsy. During the last decade new approaches to prevent, reduce, or reverse the epileptic condition have been studied, including cell-based therapy from different sources. Recent studies have shown that transplanted neuronal precursor cells derived from MGE have the ability to migrate, differentiate into inhibitory GABAergic interneurons, and integrate into cortical and hippocampal networks, modifying the inhibitory tone in the host brain. Therefore, transplantation of neuronal precursors derived from MGE into the postnatal central nervous system (CNS) could modify the neuronal circuitry in neurologic diseases in which inhibitory synaptic function is altered, such as in epilepsy. Here, we evaluated the seizure susceptibility of mice transplanted with MGE-derived cells in the maximum electroconvulsive shock (MES) model and we review some data from different studies using GABAergic precursor or GABA-releasing cell grafts in animal models of seizure and epilepsy.


Assuntos
Células-Tronco Embrionárias/transplante , Epilepsia/cirurgia , Telencéfalo/citologia , Animais , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Camundongos , Ratos , Receptores de GABA/fisiologia , Sinapses/fisiologia , Telencéfalo/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...