Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722855

RESUMO

Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.


Assuntos
Resistência à Insulina , Lipodistrofia , Humanos , Animais , Camundongos , Leptina/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Hidrolases/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Mitocôndrias/metabolismo
2.
Mol Metab ; 65: 101589, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064109

RESUMO

OBJECTIVES: Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear. METHODS: Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice. RESULTS: Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice. CONCLUSIONS: Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Peso Corporal , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos , Fator 15 de Diferenciação de Crescimento/genética , Hormônios , Humanos , Resistência à Insulina/genética , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
3.
Cell Rep ; 34(10): 108810, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691105

RESUMO

Adipogenin (Adig) is an adipocyte-enriched transmembrane protein. Its expression is induced during adipogenesis in rodent cells, and a recent genome-wide association study associated body mass index (BMI)-adjusted leptin levels with the ADIG locus. In order to begin to understand the biological function of Adig, we studied adipogenesis in Adig-deficient cultured adipocytes and phenotyped Adig null (Adig-/-) mice. Data from Adig-deficient cells suggest that Adig is required for adipogenesis. In vivo, Adig-/- mice are leaner than wild-type mice when fed a high-fat diet and when crossed with Ob/Ob hyperphagic mice. In addition to the impact on fat mass accrual, Adig deficiency also reduces fat-mass-adjusted plasma leptin levels and impairs leptin secretion from adipose explants, suggesting an additional impact on the regulation of leptin secretion.


Assuntos
Tecido Adiposo/metabolismo , Leptina/metabolismo , Proteínas Nucleares/genética , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Adiponectina/genética , Adiponectina/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Leptina/sangue , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Proteínas Nucleares/deficiência , Fenótipo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Hepatology ; 72(6): 2149-2164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32170749

RESUMO

BACKGROUND AND AIMS: Liver regeneration requires the organized and sequential activation of events that lead to restoration of hepatic mass. During this process, other vital liver functions need to be preserved, such as maintenance of blood glucose homeostasis, balancing the degradation of hepatic glycogen stores, and gluconeogenesis (GNG). Under metabolic stress, alanine is the main hepatic gluconeogenic substrate, and its availability is the rate-limiting step in this pathway. Na+ -coupled neutral amino acid transporters (SNATs) 2 and 4 are believed to facilitate hepatic alanine uptake. In previous studies, we demonstrated that a member of the Ca2+ -dependent phospholipid binding annexins, Annexin A6 (AnxA6), regulates membrane trafficking along endo- and exocytic pathways. Yet, although AnxA6 is abundantly expressed in the liver, its function in hepatic physiology remains unknown. In this study, we investigated the potential contribution of AnxA6 in liver regeneration. APPROACH AND RESULTS: Utilizing AnxA6 knockout mice (AnxA6-/- ), we challenged liver function after partial hepatectomy (PHx), inducing acute proliferative and metabolic stress. Biochemical and immunofluorescent approaches were used to dissect AnxA6-/- mice liver proliferation and energetic metabolism. Most strikingly, AnxA6-/- mice exhibited low survival after PHx. This was associated with an irreversible and progressive drop of blood glucose levels. Whereas exogenous glucose administration or restoration of hepatic AnxA6 expression rescued AnxA6-/- mice survival after PHx, the sustained hypoglycemia in partially hepatectomized AnxA6-/- mice was the consequence of an impaired alanine-dependent GNG in AnxA6-/- hepatocytes. Mechanistically, cytoplasmic SNAT4 failed to recycle to the sinusoidal plasma membrane of AnxA6-/- hepatocytes 48 hours after PHx, impairing alanine uptake and, consequently, glucose production. CONCLUSIONS: We conclude that the lack of AnxA6 compromises alanine-dependent GNG and liver regeneration in mice.


Assuntos
Anexina A6/metabolismo , Gluconeogênese/fisiologia , Regeneração Hepática/fisiologia , Animais , Anexina A6/genética , Membrana Celular/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/fisiologia , Hepatectomia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout
5.
Cell Metab ; 29(3): 707-718.e8, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639358

RESUMO

GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.


Assuntos
Ingestão de Energia/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Adulto , Animais , Linhagem Celular , Dieta Hiperlipídica/métodos , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
6.
PLoS One ; 13(8): e0201310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110341

RESUMO

Annexin A6 (AnxA6) controls cholesterol and membrane transport in endo- and exocytosis, and modulates triglyceride accumulation and storage. In addition, AnxA6 acts as a scaffolding protein for negative regulators of growth factor receptors and their effector pathways in many different cell types. Here we investigated the role of AnxA6 in the regulation of whole body lipid metabolism and insulin-regulated glucose homeostasis. Therefore, wildtype (WT) and AnxA6-knockout (KO) mice were fed a high-fat diet (HFD) for 17 weeks. During the course of HFD feeding, AnxA6-KO mice gained less weight compared to controls, which correlated with reduced adiposity. Systemic triglyceride and cholesterol levels of HFD-fed control and AnxA6-KO mice were comparable, with slightly elevated high density lipoprotein (HDL) and reduced triglyceride-rich lipoprotein (TRL) levels in AnxA6-KO mice. AnxA6-KO mice displayed a trend towards improved insulin sensitivity in oral glucose and insulin tolerance tests (OGTT, ITT), which correlated with increased insulin-inducible phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6) in liver extracts. However, HFD-fed AnxA6-KO mice failed to downregulate hepatic gluconeogenesis, despite similar insulin levels and insulin signaling activity, as well as expression profiles of insulin-sensitive transcription factors to controls. In addition, increased glycogen storage in livers of HFD- and chow-fed AnxA6-KO animals was observed. Together with an inability to reduce glucose production upon insulin exposure in AnxA6-depleted HuH7 hepatocytes, this implicates AnxA6 contributing to the fine-tuning of hepatic glucose metabolism with potential consequences for the systemic control of glucose in health and disease.


Assuntos
Anexina A6/deficiência , Gorduras na Dieta/farmacologia , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Glicogênio/metabolismo , Fígado/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Anexina A6/metabolismo , Gorduras na Dieta/efeitos adversos , Gluconeogênese/genética , Glucose/genética , Glicogênio/genética , Resistência à Insulina , Lipídeos/sangue , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo
7.
Dev Cell ; 45(4): 481-495.e8, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29754800

RESUMO

Cell and organelle membranes consist of a complex mixture of phospholipids (PLs) that determine their size, shape, and function. Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, yet how cells sense and regulate its levels in vivo remains unclear. Here we show that PCYT1A, the rate-limiting enzyme of PC synthesis, is intranuclear and re-locates to the nuclear membrane in response to the need for membrane PL synthesis in yeast, fly, and mammalian cells. By aligning imaging with lipidomic analysis and data-driven modeling, we demonstrate that yeast PCYT1A membrane association correlates with membrane stored curvature elastic stress estimates. Furthermore, this process occurs inside the nucleus, although nuclear localization signal mutants can compensate for the loss of endogenous PCYT1A in yeast and in fly photoreceptors. These data suggest an ancient mechanism by which nucleoplasmic PCYT1A senses surface PL packing defects on the inner nuclear membrane to control PC homeostasis.


Assuntos
Membrana Celular/química , Núcleo Celular/química , Colina-Fosfato Citidililtransferase/metabolismo , Elasticidade , Membrana Nuclear/química , Fosfatidilcolinas/metabolismo , Estresse Fisiológico , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Colina-Fosfato Citidililtransferase/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
8.
Exp Cell Res ; 358(2): 397-410, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28712927

RESUMO

Annexin A6 (AnxA6) has been implicated in the regulation of endo-/exocytic pathways, cholesterol transport, and the formation of multifactorial signaling complexes in many different cell types. More recently, AnxA6 has also been linked to triglyceride storage in adipocytes. Here we investigated the potential role of AnxA6 in fatty acid (FA) - induced lipid droplet (LD) formation in hepatocytes. AnxA6 was associated with LD from rat liver and HuH7 hepatocytes. In oleic acid (OA) -loaded HuH7 cells, substantial amounts of AnxA6 bound to LD in a Ca2+-independent manner. Remarkably, stable or transient AnxA6 overexpression in HuH7 cells led to elevated LD numbers/size and neutral lipid staining under control conditions as well as after OA loading compared to controls. In contrast, overexpression of AnxA1, AnxA2 and AnxA8 did not impact on OA-induced lipid accumulation. On the other hand, incubation of AnxA6-depleted HuH7 cells or primary hepatocytes from AnxA6 KO-mice with OA led to reduced FA accumulation and LD numbers. Furthermore, morphological analysis of liver sections from A6-KO mice revealed significantly lower LD numbers compared to wildtype animals. Interestingly, pharmacological inhibition of cytoplasmic phospholipase A2α (cPLA2α)-dependent LD formation was ineffective in AnxA6-depleted HuH7 cells. We conclude that cPLA2α-dependent pathways contribute to the novel regulatory role of hepatic AnxA6 in LD formation.


Assuntos
Anexina A6/metabolismo , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Lipogênese/fisiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
9.
Mol Cell Endocrinol ; 439: 419-430, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27702590

RESUMO

Lipid storage and adipokine secretion are critical features of adipocytes. Annexin A6 (AnxA6) is a lipid-binding protein regulating secretory pathways and its role in adiponectin release was examined. The siRNA-mediated AnxA6 knock-down in 3T3-L1 preadipocytes impaired proliferation, and differentiation of AnxA6-depleted cells to mature adipocytes was associated with higher soluble adiponectin and increased triglyceride storage. The latter was partly attributed to reduced lipolysis. Accordingly, AnxA6 overexpression in 3T3-L1 adipocytes lowered cellular triglycerides and adiponectin secretion. Indeed, serum adiponectin was increased in AnxA6 deficient mice. Expression analysis identified AnxA6 protein to be more abundant in intra-abdominal compared to subcutaneous adipose tissues of mice and men. AnxA6 protein levels increased in white adipose tissues of obese mice and here, levels were highest in subcutaneous fat. AnxA6 protein in adipocytes was upregulated by oxidative stress which might trigger AnxA6 induction in adipose tissues and contribute to impaired fat storage and adiponectin release.


Assuntos
Adipócitos/metabolismo , Adiponectina/metabolismo , Anexina A6/metabolismo , Metabolismo dos Lipídeos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Trióxido de Arsênio , Arsenicais/farmacologia , Quimiocinas/sangue , Ácidos Graxos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Óxidos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
10.
Immunol Cell Biol ; 94(6): 543-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26853809

RESUMO

Annexin A6 (AnxA6) has been implicated in cell signalling by contributing to the organisation of the plasma membrane. Here we examined whether AnxA6 regulates signalling and proliferation in T cells. We used a contact hypersensitivity model to immune challenge wild-type (WT) and AnxA6(-/-) mice and found that the in vivo proliferation of CD4(+) T cells, but not CD8(+) T cells, was impaired in AnxA6(-/-) relative to WT mice. However, T-cell migration and signalling through the T-cell receptor ex vivo was similar between T cells isolated from AnxA6(-/-) and WT mice. In contrast, interleukin-2 (IL-2) signalling was reduced in AnxA6(-/-) compared with WT T cells. Further, AnxA6-deficient T cells had reduced membrane order and cholesterol levels. Taken together, our data suggest that AnxA6 regulates IL-2 homeostasis and sensitivity in T cells by sustaining a lipid raft-like membrane environment.


Assuntos
Anexina A6/metabolismo , Interleucina-2/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Anexina A6/deficiência , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Colesterol/metabolismo , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Interleucina-2/biossíntese , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Interleucina-2/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
11.
J Biol Chem ; 291(3): 1320-35, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26578516

RESUMO

Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVß3 and α5ß1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.


Assuntos
Anexina A6/metabolismo , Colesterol/metabolismo , Endossomos/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Anexina A6/antagonistas & inibidores , Anexina A6/genética , Células CHO , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Movimento Celular , Células Cultivadas , Cricetulus , Endossomos/ultraestrutura , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfaVbeta3/antagonistas & inibidores , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/genética , Interferência de RNA , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imagem com Lapso de Tempo
12.
Br J Pharmacol ; 172(7): 1677-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25409976

RESUMO

BACKGROUND AND PURPOSE: Annexin A6 (AnxA6) is a calcium-dependent phospholipid-binding protein that can be recruited to the plasma membrane to function as a scaffolding protein to regulate signal complex formation, endo- and exocytic pathways as well as distribution of cellular cholesterol. Here, we have investigated how AnxA6 influences the membrane order. EXPERIMENTAL APPROACH: We used Laurdan and di-4-ANEPPDHQ staining in (i) artificial membranes; (ii) live cells to investigate membrane packing and ordered lipid phases; and (iii) a super-resolution imaging (photoactivated localization microscopy, PALM) and Ripley's K second-order point pattern analysis approach to assess how AnxA6 regulates plasma membrane order domains and protein clustering. KEY RESULTS: In artificial membranes, purified AnxA6 induced a global increase in membrane order. However, confocal microscopy using di-4-ANEPPDHQ in live cells showed that cells expressing AnxA6, which reduces plasma membrane cholesterol levels and modifies the actin cytoskeleton meshwork, displayed a decrease in membrane order (∼15 and 30% in A431 and MEF cells respectively). PALM data from Lck10 and Src15 membrane raft/non-raft markers revealed that AnxA6 expression induced clustering of both raft and non-raft markers. Altered clustering of Lck10 and Src15 in cells expressing AnxA6 was also observed after cholesterol extraction with methyl-ß-cyclodextrin or actin cytoskeleton disruption with latrunculin B. CONCLUSIONS AND IMPLICATIONS: AnxA6-induced plasma membrane remodelling indicated that elevated AnxA6 expression decreased membrane order through the regulation of cellular cholesterol homeostasis and the actin cytoskeleton. This study provides the first evidence from live cells that support current models of annexins as membrane organizers.


Assuntos
Anexina A6/metabolismo , Membrana Celular/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/química , Humanos , Lipídeos/química , Camundongos Knockout , Microscopia de Fluorescência
13.
Hepatology ; 60(4): 1367-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700364

RESUMO

UNLABELLED: Severe liver diseases are characterized by expansion of liver progenitor cells (LPC), which correlates with disease severity. However, the origin and role of LPC in liver physiology and in hepatic injury remains a contentious topic. We found that ductular reaction cells in human cirrhotic livers express hepatocyte nuclear factor 1 homeobox B (HNF1ß). However, HNF1ß expression was not present in newly generated epithelial cell adhesion molecule (EpCAM)-positive hepatocytes. In order to investigate the role of HNF1ß-expressing cells we used a tamoxifen-inducible Hnf1ßCreER/R26R(Yfp/LacZ) mouse to lineage-trace Hnf1ß(+) biliary duct cells and to assess their contribution to LPC expansion and hepatocyte generation. Lineage tracing demonstrated no contribution of HNF1ß(+) cells to hepatocytes during liver homeostasis in healthy mice or after loss of liver mass. After acute acetaminophen or carbon tetrachloride injury no contribution of HNF1ß(+) cells to hepatocyte was detected. We next assessed the contribution of Hnf1ß(+) -derived cells following two liver injury models with LPC expansion, a diethoxycarbonyl-1,4-dihydro-collidin (DDC)-diet and a choline-deficient ethionine-supplemented (CDE)-diet. The contribution of Hnf1ß(+) cells to liver regeneration was dependent on the liver injury model. While no contribution was observed after DDC-diet treatment, mice fed with a CDE-diet showed a small population of hepatocytes derived from Hnf1ß(+) cells that were expanded to 1.86% of total hepatocytes after injury recovery. Genome-wide expression profile of Hnf1ß(+) -derived cells from the DDC and CDE models indicated that no contribution of LPC to hepatocytes was associated with LPC expression of genes related to telomere maintenance, inflammation, and chemokine signaling pathways. CONCLUSION: HNF1ß(+) biliary duct cells are the origin of LPC. HNF1ß(+) cells do not contribute to hepatocyte turnover in the healthy liver, but after certain liver injury, they can differentiate to hepatocytes contributing to liver regeneration.


Assuntos
Ductos Biliares/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Epiteliais/patologia , Hepatócitos/patologia , Regeneração Hepática/fisiologia , Fígado/patologia , Células-Tronco/patologia , Acetaminofen/efeitos adversos , Animais , Ductos Biliares/metabolismo , Tetracloreto de Carbono/efeitos adversos , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Fator 1-beta Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Homeostase/fisiologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo
14.
Cell Rep ; 7(3): 883-97, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24746815

RESUMO

Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVß3 and α5ß1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.


Assuntos
Colesterol/metabolismo , Endossomos/metabolismo , Proteínas Qa-SNARE/metabolismo , Rede trans-Golgi/metabolismo , Animais , Células CHO , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Movimento Celular , Cricetinae , Cricetulus , Humanos , Integrina alfa5beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Ligação Proteica , Transporte Proteico , Proteínas Qa-SNARE/química , Receptores de Vitronectina/metabolismo , Proteínas SNARE/metabolismo , Proteína 3 Associada à Membrana da Vesícula/química , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
15.
Curr Biol ; 23(15): 1489-96, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23871243

RESUMO

Lipid droplets (LDs) are dynamic organelles that collect, store, and supply lipids [1]. LDs have a central role in the exchange of lipids occurring between the cell and the environment and provide cells with substrates for energy metabolism, membrane synthesis, and production of lipid-derived molecules such as lipoproteins or hormones. However, lipid-derived metabolites also cause progressive lipotoxicity [2], accumulation of reactive oxygen species (ROS), endoplasmic reticulum stress, mitochondrial malfunctioning, and cell death [2]. Intracellular accumulation of LDs is a hallmark of prevalent human diseases, including obesity, steatosis, diabetes, myopathies, and arteriosclerosis [3]. Indeed, nonalcoholic fatty liver disease is the most common cause of abnormal hepatic function among adults [4, 5]. Lipotoxicity gradually promotes cellular ballooning and disarray, megamitochondria, accumulation of Mallory's hyaline in hepatocytes, and inflammation, fibrosis, and cirrhosis in the liver. Here, using confocal microscopy, serial-block-face scanning electron microscopy, and flow cytometry, we show that LD accumulation is heterogeneous within a cell population and follows a positive skewed distribution. Lipid availability and fluctuations in biochemical networks controlling lipolysis, fatty acid oxidation, and protein synthesis contribute to cell-to-cell heterogeneity. Critically, this reversible variability generates a subpopulation of cells that effectively collect and store lipids. This high-lipid subpopulation accumulates more LDs and more ROS and reduces the risk of lipotoxicity to the population without impairing overall lipid homeostasis, since high-lipid cells can supply stored lipids to the other cells. In conclusion, we demonstrate fat storage compartmentalization within a cell population and propose that this is a protective social organization to reduce lipotoxicity.


Assuntos
Hepatócitos/citologia , Metabolismo dos Lipídeos , Lipídeos/química , Animais , Compostos de Boro/metabolismo , Ácidos Graxos/metabolismo , Citometria de Fluxo , Hepatócitos/metabolismo , Lipídeos/fisiologia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
16.
PLoS One ; 8(4): e62667, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23634230

RESUMO

Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico/efeitos dos fármacos , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Estabilidade Proteica/efeitos dos fármacos , Proteínas ras/metabolismo
17.
Mol Biol Cell ; 22(21): 4108-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22039070

RESUMO

Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A(2) (cPLA(2)) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA(2) inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4-dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.


Assuntos
Colesterol/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas SNARE/metabolismo , Animais , Anexina A6/metabolismo , Células CHO , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Cricetinae , Fibronectinas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Fluorescência , Fosfolipases A2 Citosólicas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...