Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 14(4): e0008223, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324736

RESUMO

Usutu virus (USUV), an African mosquito-borne flavivirus closely related to West Nile virus, was first isolated in South Africa in 1959. USUV emerged in Europe two decades ago, causing notably massive mortality in Eurasian blackbirds. USUV is attracting increasing attention due to its potential for emergence and its rapid spread in Europe in recent years. Although mainly asymptomatic or responsible for mild clinical signs, USUV was recently described as being associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting the potential health threat posed by the virus. Despite this, USUV pathogenesis remains largely unexplored. The aim of this study was to evaluate USUV neuropathogenicity using in vivo and in vitro approaches. Our results indicate that USUV efficiently replicates in the murine central nervous system. Replication in the spinal cord and brain is associated with recruitment of inflammatory cells and the release of inflammatory molecules as well as induction of antiviral-responses without major modulation of blood-brain barrier integrity. Endothelial cells integrity is also maintained in a human model of the blood-brain barrier despite USUV replication and release of pro-inflammatory cytokines. Furthermore, USUV-inoculated mice developed major ocular defects associated with inflammation. Moreover, USUV efficiently replicates in human retinal pigment epithelium. Our results will help to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.


Assuntos
Flavivirus/patogenicidade , Modelos Biológicos , Sistema Nervoso/virologia , Animais , Encéfalo/virologia , Modelos Animais de Doenças , Células Endoteliais/virologia , Células Epiteliais/virologia , Flavivirus/crescimento & desenvolvimento , Humanos , Camundongos , Epitélio Pigmentado Ocular/virologia , Medula Espinal/virologia
2.
Vaccines (Basel) ; 7(2)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238493

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus which is of major public health concern. ZIKV infection is recognized as the cause of congenital Zika disease and other neurological defects, with no specific prophylactic or therapeutic treatments. As the humoral immune response is an essential component of protective immunity, there is an urgent need for effective vaccines that confer protection against ZIKV infection. In the present study, we evaluate the immunogenicity of chimeric viral clone ZIKBeHMR-2, in which the region encoding the structural proteins of the African strain MR766 backbone was replaced with its counterpart from the epidemic strain BeH819015. Three amino-acid substitutions I152T, T156I, and H158Y were introduced in the glycan loop of the E protein (E-GL) making ZIKBeHMR-2 a non-glycosylated virus. Adult BALB/c mice inoculated intraperitoneally with ZIKBeHMR-2 developed anti-ZIKV antibodies directed against viral proteins E and NS1 and a booster dose increased antibody titers. Immunization with ZIKBeHMR-2 resulted in a rapid production of neutralizing anti-ZIKV antibodies. Antibody-mediated ZIKV neutralization was effective against viral strain MR766, whereas epidemic ZIKV strains were poorly sensitive to neutralization by anti-ZIKBeHMR-2 immune sera. From our data, we propose that the three E-GL residues at positions E-152, E-156, and E-158 greatly influence the accessibility of neutralizing antibody epitopes on ZIKV.

3.
Sci Rep ; 8(1): 8023, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795181

RESUMO

Public concerns over the use of synthetic pesticides are growing since many studies have shown their impact on human health. A new environmental movement in occidental countries promoting an organic agriculture favours the rebirth of botanical pesticides. These products confer an effective alternative to chemical pesticides such as glyphosate. Among the biopesticides, the α-terthienyls found in the roots of Tagetes species, are powerful broad-spectrum pesticides. We found that an α-terthienyl analogue with herbicidal properties, called A6, triggers resistant SDS oligomers of the pathogenic prion protein PrPSc (rSDS-PrPSc) in cells. Our main question is to determine if we can induce those rSDS-PrPSc oligomers in vitro and in vivo, and their impact on prion aggregation and propagation. Using wild-type mice challenged with prions, we showed that A6 accelerates or slows down prion disease depending on the concentration used. At 5 mg/kg, A6 is worsening the pathology with a faster accumulation of PrPSc, reminiscent to soluble toxic rSDS-PrPSc oligomers. In contrast, at 10 and 20 mg/kg of A6, prion disease occurred later, with less PrPSc deposits and with rSDS-PrPSc oligomers in the brain reminiscent to non-toxic aggregates. Our results are bringing new openings regarding the impact of biopesticides in prion and prion-like diseases.


Assuntos
Encéfalo/patologia , Neuroblastoma/tratamento farmacológico , Praguicidas/farmacologia , Proteínas PrPC/química , Doenças Priônicas/prevenção & controle , Pirimidinas/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Praguicidas/química , Proteínas PrPC/efeitos dos fármacos , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Células Tumorais Cultivadas
4.
Mol Neurodegener ; 11: 11, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26809712

RESUMO

BACKGROUND: Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrP(Sc). Aggregation of PrP(Sc) into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion aggregation pathways with small molecules can be a valuable strategy for studying prion pathogenicity and for developing new diagnostic and therapeutic approaches. We previously identified thienyl pyrimidine compounds that induce SDS-resistant PrP(Sc) (rSDS-PrP(Sc)) oligomers in prion-infected samples. RESULTS: Due to the low effective doses of the thienyl pyrimidine hits, we synthesized a quaterthiophene-bis-triazine compound, called MR100 to better evaluate their diagnostic and therapeutic potentials. This molecule exhibits a powerful activity inducing rSDS-PrP(Sc) oligomers at nanomolar concentrations in prion-infected cells. Fluorescence interaction studies of MR100 with mouse PrP fibrils showed substantial modification of the spectrum, and the interaction was confirmed in vitro by production of rSDS-oligomer species upon incubation of MR100 with fibrils in SDS-PAGE gel. We further explored whether MR100 compound has a potential to be used in the diagnosis of prion diseases. Our results showed that: (i) MR100 can detect rSDS-oligomers in prion-infected brain homogenates of various species, including human samples from CJD patients; (ii) A protocol, called "Rapid Centrifugation Assay" (RCA), was developed based on MR100 property of inducing rSDS-PrP(Sc) oligomers only in prion-infected samples, and avoiding the protease digestion step. RCA allows the detection of both PK-sensitive and PK-resistant PrP(Sc) species in rodents samples but also from patients with different CJD forms (sporadic and new variant); (iii) A correlation could be established between the amount of rSDS-PrP(Sc) oligomers revealed by MR100 and the duration of the symptomatic phase of the disease in CJD patients; and (iv) Bioassay experiments showed that MR100 can trap prion infectivity more efficiently than P30 drug. CONCLUSIONS: MR100 is a powerful tool not only for studying the prion aggregation pathways regarding oligomeric and sPrP(Sc) species, but also for developing alternative methods for the detection of prion-infected samples. Considering our bioassay results, MR100 is a promising molecule for the development of prion decontamination approaches.


Assuntos
Encéfalo/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Príons , Pirimidinas/metabolismo , Animais , Western Blotting/métodos , Modelos Animais de Doenças , Corantes Fluorescentes/metabolismo , Humanos , Camundongos
5.
PLoS Comput Biol ; 10(8): e1003735, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101755

RESUMO

In a previous work by Alvarez-Martinez et al. (2011), the authors pointed out some fallacies in the mainstream interpretation of the prion amyloid formation. It appeared necessary to propose an original hypothesis able to reconcile the in vitro data with the predictions of a mathematical model describing the problem. Here, a model is developed accordingly with the hypothesis that an intermediate on-pathway leads to the conformation of the prion protein into an amyloid competent isoform thanks to a structure, called micelles, formed from hydrodynamic interaction. The authors also compare data to the prediction of their model and propose a new hypothesis for the formation of infectious prion amyloids.


Assuntos
Amiloide/metabolismo , Micelas , Modelos Moleculares , Príons/química , Príons/metabolismo , Amiloide/química , Cinética , Conformação Proteica
6.
Biochim Biophys Acta ; 1814(10): 1305-17, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21683809

RESUMO

It is generally accepted that spongiform encephalopathies result from the aggregation into amyloid of a ubiquitous protein, the so-called prion protein. As a consequence, the dynamics of amyloid formation should explain the characteristics of the prion diseases: infectivity as well as sporadic and genetic occurrence, long incubation time, species barriers and strain specificities. The success of this amyloid hypothesis is due to the good qualitative agreement of this hypothesis with the observations. However, a number of difficulties appeared when comparing quantitatively the in vitro experimental results with the theoretical models, suggesting that some differences should hide important discrepancies. We used well defined quantitative models to analyze the experimental results obtained by in vitro polymerization of the recombinant hamster prion protein. Although the dynamics of polymerization resembles a simple nucleus-dependent fibrillogenesis, neither the initial concentration dependence nor off-pathway hypothesis fit with experimental results. Furthermore, seeded polymerization starts after a long time delay suggesting the existence of a specific mechanism that takes place before nucleus formation. On the other hand, polymerization dynamics reveals a highly stochastic mechanism, the origin of which appears to be caused by nucleation heterogeneity. Moreover, the specific structures generated during nucleation are maintained during successive seeding although a clear improvement of the dynamics parameters (polymerization rate and lag time) is observed. We propose that an additional on-pathway reaction takes place before nucleation and it is responsible for the heterogeneity of structures produced during prion protein polymerization in vitro. These amyloid structures behave like prion strains. A model is proposed to explain the genesis of heterogeneity among prion amyloid.


Assuntos
Placa Amiloide/metabolismo , Príons/química , Príons/metabolismo , Multimerização Proteica/fisiologia , Animais , Soluções Tampão , Cricetinae , Cristalização , Humanos , Cinética , Modelos Biológicos , Simulação de Dinâmica Molecular , Placa Amiloide/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Tempo
7.
Biochim Biophys Acta ; 1764(3): 546-51, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16298177

RESUMO

High pressure and temperature have been used efficiently to shed light on prion protein structure and folding. These physical parameters induce different conformational states of the prion protein, suggesting that prion structural changes occur within a complex energy landscape. Pressure has been used to prevent and even reverse prion protein aggregation. Alternatively, depending on experimental conditions, pressure also promotes prion protein aggregation leading to the formation of amorphous aggregates and amyloid fibrils. The latter ones show all characteristics of the pathogenic scrapie form. Furthermore, the pressure effects on prion protein structure appear to be strongly dependent on the integrity of the disulfide bond. In this paper, we discuss the mechanism and the origin of these opposing effects of pressure, taking the truncated form of hamster prion protein (SHaPrP(90-231)) as a model.


Assuntos
Dissulfetos/química , Príons/química , Temperatura Alta , Humanos , Pressão , Conformação Proteica , Dobramento de Proteína , Temperatura
8.
Infect Immun ; 73(10): 6229-36, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16177294

RESUMO

Brucella spp. are stealthy bacteria that enter host cells without major perturbation. The molecular mechanism involved is still poorly understood, although numerous studies have been published on this subject. Recently, it was reported that Brucella abortus utilizes cellular prion protein (PrP(C)) to enter the cells and to reach its replicative niche. The molecular mechanisms involved were not clearly defined, prompting us to analyze this process using blocking antibodies against PrP(C). However, the behavior of Brucella during cellular infection under these conditions was not modified. In a next step, the behavior of Brucella in macrophages lacking the prion gene and the infection of mice knocked out for the prion gene were studied. We observed no difference from results obtained with the wild-type control. Although some contacts between PrP(C) and Brucella were observed on the surface of the cells by using confocal microscopy, we could not show that Brucella specifically bound recombinant PrP(C). Therefore, we concluded from our results that prion protein (PrP(C)) was not involved in Brucella infection.


Assuntos
Brucella suis/fisiologia , Brucelose/etiologia , Macrófagos/microbiologia , Proteínas PrPC/fisiologia , Animais , Anticorpos/farmacologia , Brucella suis/química , Brucelose/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Chaperonina 60/análise , Chaperonina 60/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fagossomos/metabolismo , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/genética
9.
Protein Sci ; 14(4): 956-67, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15772306

RESUMO

The native conformation of host-encoded cellular prion protein (PrP(C)) is metastable. As a result of a post-translational event, PrP(C) can convert to the scrapie form (PrP(Sc)), which emerges as the essential constituent of infectious prions. Despite thorough research, the mechanism underlying this conformational transition remains unknown. However, several studies have highlighted the importance of the N-terminal region spanning residues 90-154 in PrP folding. In order to understand why PrP folds into two different conformational states exhibiting distinct secondary and tertiary structure, and to gain insight into the involvement of this particular region in PrP transconformation, we studied the pressure-induced unfolding/ refolding of recombinant Syrian hamster PrP expanding from residues 90-231, and compared it with heat unfolding. By using two intrinsic fluorescent variants of this protein (Y150W and F141W), conformational changes confined to the 132-160 segment were monitored. Multiple conformational states of the Trp variants, characterized by their spectroscopic properties (fluorescence and UV absorbance in the fourth derivative mode), were achieved by tuning the experimental conditions of pressure and temperature. Further insight into unexplored conformational states of the prion protein, likely to mimic the in vivo structural change, was obtained from pressure-assisted cold unfolding. Furthermore, salt-induced conformational changes suggested a structural stabilizing role of Tyr150 and Phe141 residues, slowing down the conversion to a beta-sheet form.


Assuntos
Príons/química , Aminoácidos/química , Animais , Cricetinae , Congelamento , Mesocricetus , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
10.
Infect Immun ; 72(10): 5693-703, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15385468

RESUMO

The survival and replication of Brucella in macrophages is initially triggered by a low intraphagosomal pH. In order to identify proteins released by Brucella during this early acidification step, we analyzed Brucella suis conditioned medium at various pH levels. No significant proteins were released at pH 4.0 in minimal medium or citrate buffer, whereas in acetate buffer, B. suis released a substantial amount of soluble proteins. Comparison of 13 N-terminal amino acid sequences determined by Edman degradation with their corresponding genomic sequences revealed that all of these proteins possessed a signal peptide indicative of their periplasmic location. Ten proteins are putative substrate binding proteins, including a homologue of the nopaline binding protein of Agrobacterium tumefaciens. The absence of this homologue in Brucella melitensis was due to the deletion of a 7.7-kb DNA fragment in its genome. We also characterized for the first time a hypothetical 9.8-kDa basic protein composed of five amino acid repeats. In B. suis, this protein contained 9 repeats, while 12 were present in the B. melitensis orthologue. B. suis in acetate buffer depended on neither the virB type IV secretory system nor the omp31 gene product. However, the integrity of the omp25 gene was required for release at acidic pH, while the absence of omp25b or omp25c displayed smaller effects. Together, these results suggest that Omp25 is involved in the membrane permeability of Brucella in acidic medium.


Assuntos
Ácidos/farmacologia , Arginina/análogos & derivados , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella suis/efeitos dos fármacos , Brucella suis/metabolismo , Proteínas Periplásmicas/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Arginina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sequência de Bases , Brucella suis/genética , Soluções Tampão , Extensões da Superfície Celular/efeitos dos fármacos , Genes Bacterianos/genética , Genômica , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Dados de Sequência Molecular , Mutação/genética , Proteínas Periplásmicas/química , Permeabilidade , Fagossomos/microbiologia , Ligação Proteica , Ribose/metabolismo , Homologia de Sequência , Solubilidade , Fatores de Virulência
11.
Biochemistry ; 43(22): 7162-70, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15170353

RESUMO

Our understanding of conformational conversion of proteins in diseases is essential for any diagnostic and therapeutic approach. Although not fully understood, misfolding of the prion protein (PrP) is implicated in the pathogenesis of prion diseases. Despite several efforts to produce the pathologically misfolded conformation in vitro from a recombinant PrP, no positive result has yet been obtained. Within the "protein-only hypothesis", the reason for this hindrance may be that the experimental conditions used did not allow selection of the pathway adopted in vivo resulting in conversion into the infectious form. Here, using a pressure perturbation approach, we show that recombinant PrP is converted to a novel misfolded conformer, which is prone to aggregate and ultimately form amyloid fibrils. A short incubation at high pressure (600 MPa) of the truncated form of hamster prion protein (SHaPrP(90-231)) resulted in the formation of pre-amyloid structures. The mostly globular aggregates were characterized by ThT and ANS binding, and by a beta-sheet-rich secondary structure. After overnight incubation at 600 MPa, amyloid fibrils were formed. In contrast to pre-amyloid structures, they showed birefringency of polarized light after Congo red staining and a strongly decreased ANS binding capacity, but enhanced ThT binding. Both aggregate types were resistant to digestion by PK, and can be considered as potential scrapie-like forms or precursors. These results may be useful for the search for compounds preventing pathogenic PrP misfolding and aggregation.


Assuntos
Amiloide/química , Pressão , Príons/química , Dobramento de Proteína , Naftalenossulfonato de Anilina/farmacologia , Animais , Vermelho Congo , Cricetinae , Endopeptidase K/metabolismo , Corantes Fluorescentes/farmacologia , Doenças Priônicas/patologia , Príons/ultraestrutura , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Infect Immun ; 71(3): 1075-82, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12595417

RESUMO

Expression of the virB operon, encoding the type IV secretion system required for Brucella suis virulence, occurred in the acidic phagocytic vacuoles of macrophages and could be induced in minimal medium at acidic pH values. To analyze the production of VirB proteins, polyclonal antisera against B. suis VirB5 and VirB8 were generated. Western blot analysis revealed that VirB5 and VirB8 were detected after 3 h in acidic minimal medium and that the amounts increased after prolonged incubation. Unlike what occurs in the related organism Agrobacterium tumefaciens, the periplasmic sugar binding protein ChvE did not contribute to VirB protein production, and B. suis from which chvE was deleted was fully virulent in a mouse model. Comparative analyses of various Brucella species revealed that in all of them VirB protein production increased under acidic conditions. However, in rich medium at neutral pH, Brucella canis and B. suis, as well as the Brucella abortus- and Brucella melitensis-derived vaccine strains S19, RB51, and Rev.1, produced no VirB proteins or only small amounts of VirB proteins, whereas the parental B. abortus and B. melitensis strains constitutively produced VirB5 and VirB8. Thus, the vaccine strains were still able to induce virB expression under acidic conditions, but the VirB protein production was markedly different from that in the wild-type strains at pH 7. Taken together, the data indicate that VirB protein production and probably expression of the virB operon are not uniformly regulated in different Brucella species. Since VirB proteins were shown to modulate Brucella phagocytosis and intracellular trafficking, the differential regulation of the production of these proteins reported here may provide a clue to explain their role(s) during the infection process.


Assuntos
Proteínas de Bactérias/biossíntese , Brucella/metabolismo , Soros Imunes/imunologia , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Brucella/genética , Meios de Cultura , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Óperon , Coelhos
13.
Biochim Biophys Acta ; 1645(2): 228-40, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12573253

RESUMO

Overproduction and purification of the prion protein is a major concern for biological or biophysical analysis as are the structural specificities of this protein in relation to infectivity. We have developed a method for the effective cloning, overexpression in Escherichia coli and purification to homogeneity of Syrian golden hamster prion protein (SHaPrP(90-231)). A high level of overexpression, resulting in the formation of inclusion bodies, was obtained under the control of the T7-inducible promoter of the pET15b plasmid. The protein required denaturation, reduction and refolding steps to become soluble and attain its native conformation. Purification was carried out by differential centrifugation, gel filtration and reverse phase chromatography. An improved cysteine oxidation protocol using oxidized glutathione under denaturing conditions, resulted in the recovery of a higher yield of chromatographically pure protein. About 10 mg of PrP protein per liter of bacterial culture was obtained. The recombinant protein was identified by monoclonal antibodies and its integrity was confirmed by electrospray mass spectrometry (ES/MS), whereas correct folding was assessed by circular dichroism (CD) spectroscopy. This protein had the structural characteristics of PrP(C) and could be converted to an amyloid structure sharing biophysical and biochemical properties of the pathologic form (PrP(Sc)). The sensitivity of these two forms to high pressure was investigated. We demonstrate the potential of using pressure as a thermodynamic parameter to rescue trapped aggregated prion conformations into a soluble state, and to explore new conformational coordinates of the prion protein conformational landscape.


Assuntos
Príons/biossíntese , Príons/genética , Animais , Cromatografia em Gel , Dicroísmo Circular , Clonagem Molecular , Cricetinae , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Plasmídeos , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPSc/química , Proteínas PrPSc/genética , Pressão , Príons/química , Conformação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
14.
Biochemistry ; 42(5): 1318-25, 2003 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-12564935

RESUMO

At high temperature, recombinant hamster prion protein (SHaPrP(90-231)) undergoes aggregation and changes from a predominantly alpha-helical to beta-sheet conformation. We then applied high pressure (200 MPa) to the beta-sheet-rich conformation. The aggregation was reversed, and the original tertiary and secondary structures were recovered at ambient pressure, after pressure release. The application of a pressure of 200 MPa thus allowed studying the heat-induced equilibrium refolding in the absence of protein aggregation. Prion protein unfolding as a function of high pressure was also investigated. Simple two-state, reversible unfolding transitions were observed, as monitored by spectral changes in the UV and fluorescence of the hydrophobic probe 8-anilino-1-naphthalene sulfonate. However, these heat- and pressure-induced conformers differed in their unfolding free energy. At pressures over 400 MPa, strong thioflavin-T binding was observed, suggesting a further structural change to a metastable oligomeric structure.


Assuntos
Fragmentos de Peptídeos/química , Pressão , Príons/química , Animais , Precipitação Química , Cricetinae , Temperatura Alta , Cinética , Luz , Mesocricetus , Fragmentos de Peptídeos/metabolismo , Príons/metabolismo , Conformação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...