Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427206

RESUMO

The CNS is regarded as an immunoprivileged organ, evading routine immune surveillance; however, the coordinated development of immune responses profoundly influences outcomes after brain injury. Innate lymphoid cells (ILCs) are cytokine-producing cells that are critical for the initiation, modulation, and resolution of inflammation, but the functional relevance and mechanistic regulation of ILCs are unexplored after acute brain injury. We demonstrate increased proliferation of all ILC subtypes within the meninges for up to 1 year after experimental traumatic brain injury (TBI) while ILCs were present within resected dura and elevated within cerebrospinal fluid (CSF) of moderate-to-severe TBI patients. In line with energetic derangements after TBI, inhibition of the metabolic regulator, AMPK, increased meningeal ILC expansion, whereas AMPK activation suppressed proinflammatory ILC1/ILC3 and increased the frequency of IL-10-expressing ILC2 after TBI. Moreover, intracisternal administration of IL-33 activated AMPK, expanded ILC2, and suppressed ILC1 and ILC3 within the meninges of WT and Rag1-/- mice, but not Rag1-/- IL2rg-/- mice. Taken together, we identify AMPK as a brake on the expansion of proinflammatory, CNS-resident ILCs after brain injury. These findings establish a mechanistic framework whereby immunometabolic modulation of ILCs may direct the specificity, timing, and magnitude of cerebral immunity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/imunologia , Imunidade Inata , Linfócitos/imunologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/imunologia , Adolescente , Adulto , Idoso , Animais , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos/classificação , Linfócitos/patologia , Masculino , Meninges/imunologia , Meninges/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
2.
EPMA J ; 11(2): 217-250, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549916

RESUMO

Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.

3.
Sci Adv ; 6(22): eaax8847, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523980

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Preventative measures reduce injury incidence and/or severity, yet one-third of hospitalized patients with TBI die from secondary pathological processes that develop during supervised care. Neutrophils, which orchestrate innate immune responses, worsen TBI outcomes via undefined mechanisms. We hypothesized that formation of neutrophil extracellular traps (NETs), a purported mechanism of microbial trapping, exacerbates acute neurological injury after TBI. NET formation coincided with cerebral hypoperfusion and tissue hypoxia after experimental TBI, while elevated circulating NETs correlated with reduced serum deoxyribonuclease-1 (DNase-I) activity in patients with TBI. Functionally, Toll-like receptor 4 (TLR4) and the downstream kinase peptidylarginine deiminase 4 (PAD4) mediated NET formation and cerebrovascular dysfunction after TBI. Last, recombinant human DNase-I degraded NETs and improved neurological function. Thus, therapeutically targeting NETs may provide a mechanistically innovative approach to improve TBI outcomes without the associated risks of global neutrophil depletion.


Assuntos
Lesões Encefálicas Traumáticas , Armadilhas Extracelulares , Lesões Encefálicas Traumáticas/complicações , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Imunidade Inata , Neutrófilos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...