Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Environ Sci Pollut Res Int ; 31(8): 11950-11967, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228949

RESUMO

Downcycled rubber, derived from end-of-life tires (ELTs), is frequently applied as crumb rubber (CR) as infill of synthetic turf in sports facilities. This practice has been questioned in recent years as numerous studies have reported the presence of potentially hazardous chemicals in this material. CR particles fall into the category of microplastics (MPs), making them possible vectors for emerging micropollutants. A preliminary study where volatile methylsiloxanes (VMSs) were found in CR originated the hypothesis that VMSs are present in this material worldwide. Consequently, the present work evaluates for the first time the levels and trends of seven VMSs in CR from synthetic turf football fields, while attempting to identify the main sources and impacts of these chemicals. A total of 135 CR samples and 12 other of alternative materials were analyzed, employing an ultrasound-assisted dispersive solid-phase extraction followed by gas chromatography-mass spectrometry (GC-MS), and the presence of VMSs was confirmed in all samples, in total concentrations ranging from 1.60 to 5089 ng.g-1. The levels were higher in commercial CR (before field application), a reflection of the use of VMS-containing additives in tire production and/or the degradation of silicone polymers employed in vehicles. The VMSs generally decreased over time on the turf, as expected given their volatile nature and the wearing of the material. Finally, the human exposure doses to VMSs in CR (by dermal absorption and ingestion) for people in contact with synthetic turf in football fields were negligible (maximum total exposure of 20.5 ng.kgBW-1.year-1) in comparison with the European Chemicals Agency (ECHA) reference doses: 1.35 × 109 ng.kgBW-1.year-1 for D4 and 1.83 × 109 ng.kgBW-1.year-1 for D5. Nevertheless, more knowledge on exposure through inhalation and the combined effects of all substances is necessary to provide further corroboration. This work proved the presence of VMSs in CR from ELTs, another family of chemical of concern to take into account when studying MPs as vectors of other contaminants.


Assuntos
Exposição Ambiental , Futebol Americano , Humanos , Exposição Ambiental/análise , Borracha/química , Microplásticos , Plásticos
2.
J Environ Manage ; 348: 119314, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857217

RESUMO

Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O3)-based processes (NF + O3, NF + O3/H2O2 and NF + O3/H2O2/UVA) was studied aiming to produce clean water from wastewater treatment plant (WWTP) secondary effluents to be safely discharged into water bodies, reused in daily practices such as aquaculture activities or for recharging aquifers used as abstraction sources for drinking water production. Nanofiltration was performed in a pilot-scale unit and O3-based processes in a continuous-flow column. The peroxone process (O3/H2O2) was considered the most promising technology to be coupled to nanofiltration, all the target pharmaceuticals being removed at an extent higher than 98% from WWTP secondary effluents, with a DOC reduction up to 92%. The applicability of the clean water stream for recharging aquifers used as abstraction sources for drinking water production was supported by a risk assessment approach, regarding the final concentrations of the target pharmaceuticals. Moreover, the toxicity of the nanofiltration retentate, a polluted stream generated from the nanofiltration system, was greatly decreased after the application of the peroxone process, which evidences the positive impact on the environment of implementing a NF + O3/H2O2 process.


Assuntos
Antineoplásicos , Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Preparações Farmacêuticas , Oxirredução
3.
Environ Sci Pollut Res Int ; 30(48): 106099-106111, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723401

RESUMO

The rise of nanofiltration technologies holds great promise for creating more effective and affordable techniques aiming to remove undesirable pollutants from wastewaters. Despite nanofiltration's promising potential in removing antineoplastic drugs from liquid matrices, the limited information on this topic makes it important to estimate the rejection rates for a larger number of compounds, particularly the emerging ones, in order to preview the nanofiltration performance. Aiming to have preliminary estimations of the rejection rates of antineoplastic drugs by nanofiltration, 54 antineoplastic drugs were studied in 5 nanofiltration membranes (Desal 5DK, Desal HL, Trisep TS-80, NF270, and NF50), using a quantitative structure-activity relationship (QSAR) model. While this methodology provides useful and reliable predictions of the rejections of compounds by nanofiltration, particularly for hydrophilic and neutral compounds, it is important to note that QSAR results should always be corroborated by experimental assays, as predictions were confirmed to have their limitations (especially for hydrophobic and charged compounds). Out of the 54 studied antineoplastic drugs, 29 were predicted to have a rejection that could go up to 100%, independent of the membrane used. Nonetheless, there were 2 antineoplastic drugs, fluorouracil and thiotepa, for which negligible removals were obtained (<21%). This study's findings may contribute (i) to the selection of the most appropriate nanofiltration membranes for removing antineoplastic drugs from wastewaters and (ii) to assist in the design of effective treatment approaches for their removal.


Assuntos
Antineoplásicos , Filtração , Filtração/métodos , Águas Residuárias , Nanotecnologia/métodos , Tecnologia , Membranas Artificiais
4.
Environ Res ; 234: 116564, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422117

RESUMO

Volatile methylsiloxanes (VMSs) are a group of additives employed in different consumer products that can affect the quality of the biogas produced in wastewater treatment plants (WWTPs). The main objective of this study is to understand the fate of different VMSs along the treatment process of a WWTP located in Aveiro (Portugal). Thus, wastewater, sludge, biogas, and air were sampled in different units for two weeks. Subsequently, these samples were extracted and analyzed by different environment-friendly protocols to obtain their VMS (L3-L5, D3-D6) concentrations and profiles. Finally, considering the different matrix flows at every sampling moment, the mass distribution of VMSs within the plant was estimated. The levels of ∑VMSs were similar to those showed in the literature (0.1-50 µg/L in entry wastewater and 1-100 µg/g dw in primary sludge). However, the entry wastewater profile showed higher variability in D3 concentrations (from non detected to 49 µg/L) than found in previous studies (0.10-1.00 µg/L), likely caused by isolated releases of this compound that could be related to industrial sources. Outdoor air samples showed a prevalence of D5, while indoor air locations were characterized by a predominance of D3 and D4. Differences in sources and the presence of an indoor air filtration system may explain this divergence. Biogas was characterized by ∑VMSs concentrations (8.00 ± 0.22 mg/m3) above the limits recommended by some engine manufacturers and mainly composed of D5 (89%). Overall, 81% of the total incoming mass of VMSs is reduced along the WWTP, being the primary decanter and the secondary treatment responsible for the highest decrease (30.6% and 29.4% of the initial mass, respectively). This reduction, however, is congener dependant. The present study demonstrates the importance of extending sampling periods and matrices (i.e., sludge and air) to improve sample representativity, time-sensitivity, and the accuracy of mass balance exercises.


Assuntos
Águas Residuárias , Purificação da Água , Esgotos , Biocombustíveis , Siloxanas/análise , Monitoramento Ambiental
5.
Environ Pollut ; 332: 121944, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290632

RESUMO

Antineoplastic drugs are pharmaceuticals that have been raising concerns among the scientific community due to: (i) their increasing prescription in the fight against the disease of the twentieth century (cancer); (ii) their recalcitrance to conventional wastewater treatments; (iii) their poor environmental biodegradability; and (iv) their potential risk to any eukaryotic organism. This emerges the urgency in finding solutions to mitigate the entrance and accumulation of these hazardous chemicals in the environment. Advanced oxidation processes (AOPs) have been taken into consideration to improve the degradation of antineoplastic drugs in wastewater treatment plants (WWTPs), but the formation of by-products that are more toxic or exhibit a different toxicity profile than the parent drug is frequently reported. This work evaluates the performance of a nanofiltration pilot unit, equipped with a Desal 5DK membrane, in the treatment of real WWTP effluents contaminated (without spiking) with eleven pharmaceuticals, five of which were never studied before. Average removals of 68 ± 23% were achieved for the eleven compounds, with decreasing risks from feed to permeate for aquatic organisms from receiving waterbodies (with the exception of cyclophosphamide, for which a high risk was estimated in the permeate). Aditionally, no significative impact on the growth and germination of three different seeds (Lepidium sativum, Sinapis alba, and Sorghum saccharatum) were determined for permeate matrix in comparison to the control.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Antineoplásicos/toxicidade , Eucariotos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Monitoramento Ambiental
6.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985498

RESUMO

Moringa oleifera, which is rich in bioactive compounds, has numerous biological activities and is a powerful source of antioxidants and nutrients. Therefore, M. oleifera can be incorporated into food to mitigate children's malnutrition. In this work, the bioactive compounds were extracted from M. oleifera leaf powder by ultrasound-assisted solid-liquid extraction. The antioxidant and antimicrobial activities and the phenolic composition of the extract were evaluated. The extract presented a total phenolic content of 54.5 ± 16.8 mg gallic acid equivalents/g and IC50 values of 133.4 ± 12.3 mg/L for DPPH and 60.0 ± 9.9 mg/L for ABTS. Catechin, chlorogenic acid, and epicatechin were the main phenolics identified by HPLC-DAD. The obtained extract and M. oleifera leaf powder were incorporated into yoghurts and their physicochemical and biological properties were studied. The incorporation of M. oleifera did not impair the yoghurts' stability over eight weeks when compared to both negative and positive controls. The extract presented higher stability regarding syneresis but lower stability regarding TPC compared to the powder. Also, the fortified yoghurts presented higher antioxidant properties than the negative control. These findings highlight the potential use of M. oleifera powder and extract as natural additives to produce fortified foods that can be used in the mitigation of malnutrition.


Assuntos
Desnutrição , Moringa oleifera , Humanos , Criança , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Moringa oleifera/química , Pós , Países em Desenvolvimento , Iogurte , Fenóis/análise , Alimentos Fortificados , Folhas de Planta/química
7.
J Hazard Mater ; 448: 130883, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731320

RESUMO

The consumption of cytostatics, pharmaceuticals prescribed in chemotherapy, is increasing every year and worldwide, along with the incidence of cancer. The presence and the temporal evolution of cytostatics in wastewaters from a Portuguese hospital center was evaluated through a 9-month sampling campaign, comprising a total of one hundred and twenty-nine samples, collected from May 2019 to February 2020. Eleven cytostatics out of thirteen pharmaceuticals were studied, including flutamide, mycophenolate mofetil and mycophenolic acid, which have never been monitored before. Target analytes were extracted and quantified by solid-phase extraction coupled to liquid-chromatography-tandem mass spectrometry analysis; the method was fully validated. All pharmaceuticals were detected in at least one sample, bicalutamide being the one found with higher frequency (detected in all samples), followed by mycophenolic acid, which was also the compound detected at higher concentrations (up to 5340 ± 211 ng/L). Etoposide, classified as carcinogenic to humans, was detected in 60% of the samples at concentrations up to 142 ± 15 ng/L. The risk from exposure to cytostatics was estimated for aquatic organisms living in receiving bodies. Cyclophosphamide, doxorubicin, etoposide, flutamide, megestrol and mycophenolic acid are suspected to induce risk. Long-term and synergic effects should not be neglected, even for the cytostatics for which no risk was estimated.


Assuntos
Citostáticos , Poluentes Químicos da Água , Humanos , Citostáticos/análise , Flutamida , Etoposídeo/análise , Ácido Micofenólico , Poluentes Químicos da Água/química , Extração em Fase Sólida/métodos , Monitoramento Ambiental/métodos , Preparações Farmacêuticas
8.
Sci Total Environ ; 853: 158559, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087660

RESUMO

Cytostatic drugs are pharmaceuticals administered to cancer patients under chemotherapy. Their occurrence in surface waters has been reported worldwide, increasing environmental and human health concerns. This work addresses a question of worldwide interest: are these hazardous pharmaceuticals in surface waters a potential threat? For the first time, this study brings information on the presence of cytostatic drugs in Portuguese rivers. Furthermore, cutting-edge data on the occurrence of two cytostatic drugs is provided; up to the authors' best knowledge, flutamide and mycophenolate mofetil have never been monitored in worldwide surface waters. Nine out of thirteen cytostatic drugs were detected in Portuguese rivers. Despite bicalutamide being the cytostatic most frequently detected, the highest concentration was recorded for cyproterone (19 ± 3 ng/L). Three different scenarios were considered to estimate the risks from the exposure of humans to cytostatic drugs via surface waters. Two scenarios are associated with bathing practices in rivers, particularly in the spring and summer seasons (river beaches): (i) the exposure to cytostatic drugs by dermal contact with contaminated water and (ii) the exposure by accidental ingestion of contaminated water, which is less likely but also occurs. The third exposure scenario is related to (iii) the long-life consumption of drinking water produced from river water capture, under worst-case conditions, i.e. negligible degradation of cytostatic drugs at drinking water treatment plants. It was concluded that the third exposure context to cytostatics could represent a risk to children, if the highest concentration ever reported in the literature for cyclophosphamide in surface waters is considered. Still, attending to the carcinogenicity of some of these compounds (e.g., cyclophosphamide, chlorambucil, etoposide and tamoxifen), health risks might always be expected, regardless of the contamination level. Furthermore, health risks associated with synergic effects and/or long-term exposures cannot be ruled out, even for the remaining cytostatics/exposure contexts.


Assuntos
Citostáticos , Água Potável , Poluentes Químicos da Água , Criança , Humanos , Citostáticos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Etoposídeo , Flutamida , Ácido Micofenólico , Rios , Ciclofosfamida , Clorambucila , Tamoxifeno , Ciproterona , Preparações Farmacêuticas
9.
J Hazard Mater ; 440: 129743, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963086

RESUMO

Over the past decade there has been an increasing concern on the presence of cytostatics (also known as anticancer drugs) in natural waterbodies. The conventional wastewater treatments seem not to be effective enough to remove them, and therefore new processes must be considered. This work investigates the performance of ozonation (O3), catalytic ozonation (O3/Fe2+) and peroxone (O3/H2O2) processes, under dark or UV radiation conditions, for the degradation of cytostatics of worldwide concern. The degradation of bicalutamide (a representative of recalcitrant cytostatics) was firstly assessed in batch and then in a tubular column reactor (continuous flow mode runs) using a wastewater treatment plant (WWTP) secondary effluent. Bicalutamide removal ranged between 66 % (O3) and 98 % (O3/H2O2/UV) in continuous flow mode runs, the peroxone process being the most effective. The performance of these processes was then assessed against a mixture of twelve cytostatics of worldwide concern spiked in the WWTP effluent (25-350 ng/L). After treatment, seven cytostatics were completely removed, whereas the five most recalcitrant ones were eliminated to an extent of 8-92 % in O3/H2O2, and 44-95 % in O3/H2O2/UV. Phytotoxicity tests revealed a noticeable reduction in the effluent toxicity, demonstrating the feasibility of these processes in realistic conditions as tertiary treatment.


Assuntos
Citostáticos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Anilidas , Peróxido de Hidrogênio , Nitrilas , Oxirredução , Compostos de Tosil , Águas Residuárias , Água , Poluentes Químicos da Água/análise
11.
Chemosphere ; 299: 134379, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339520

RESUMO

Crumb rubber derived from end-of-life tires (ELTs) is frequently used as infill of synthetic turf pitches, promoting circular economy. Although important to reduce the accumulation of waste, the use of recycled ELTs can be a problem to human health and the environment, both by direct contact during pitch use and by the release of these elements to the surroundings, mostly via volatilization and leaching. The present study aimed to evaluate the distribution of metals in ELT-derived crumb rubber collected in artificial turf worldwide and assess possible trends by country, pitch age and type (indoor vs. outdoor). The concentration ranges observed are very wide, especially in outdoor fields and for the most abundant metals, namely Zn (2989-5246 mg/kg), Fe (196-5194 mg/kg), Mg (188-1795 mg/kg) and Al (159-1882 mg/kg). For Zn, the levels were mostly above the safe limits set in European directives for relatable matrices (soils and toy materials), and the same happened for Pb, a much more toxic metal at lower concentrations. A multi-pathway human exposure study was also performed, and the risk assessment shows non-carcinogenic and carcinogenic risks from accidental crumb rubber ingestion (with Cr and Pb as major contributors) above the acceptable values for all the receptors except adult bystanders, with a higher significance to younger individuals. These results bring a different perspective regarding most of the studies reporting low risks related with exposure to metals in crumb rubber.


Assuntos
Metaloides , Metais Pesados , Adulto , Humanos , Chumbo , Reciclagem , Medição de Risco , Borracha/toxicidade
12.
Sci Total Environ ; 824: 153821, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35167889

RESUMO

Volatile methylsiloxanes (VMSs) are found in a broad range of industrial and consumer products. They are categorized as "high production volume chemicals" by the U.S. Environmental Protection Agency and listed as candidates of substances of very high concern in 2018, by the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Industrial wastewater and treated effluents may contain VMSs in different amounts, which can be discharged in the receptor media and may lead to environmental contamination. This can result in direct exposure to aquatic receptors in the water column or to benthic invertebrates from contact and/or ingestion of sediments, and indirect exposures through the aquatic food chain. The possible toxicological effects of VMSs for the aquatic biota and human ecology are not very well known since published information regarding this topic is scarce. VMSs have been subjected to regulatory scrutiny for environmental concerns and have already been screened to determine their environmental risk and ecological harm. This paper aims to assess VMSs bioaccumulation and potential biomagnification on food webs, using several bioaccumulation metrics. The result is a high-level overview of all the collected data, comparing the findings and the experimental conditions applied during the assessments. Several studies present conflicting results regarding the bioaccumulation categorization. Some aquatic organisms demonstrated a high bioconcentration and bioaccumulation of these contaminants. Trophic magnification factors (TMFs) have been suggested as the most reliable tool to assess a chemical behaviour in food webs. However, bioaccumulation studies in food webs provided mixed information, with some studies indicating trophic dilution and others presenting a potential of trophic biomagnification of VMSs. Efforts should be directed to obtain field-based levels of VMSs at different trophic levels and a wider range of linear VMSs should be analysed, since most studies focused on D4, D5 and D6.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Bioacumulação , Ecossistema , Peixes , Cadeia Alimentar , Humanos , Poluentes Químicos da Água/análise
13.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577031

RESUMO

Cytostatics are toxic pharmaceuticals, whose presence in surfaces puts healthcare workers at risk. These drugs might also end up in hospital effluents (HWW), potentially damaging aquatic ecosystems. Bicalutamide is a cytostatic extensively consumed worldwide, but few analytical methods exist for its quantification and most of them require advanced techniques, such as liquid chromatography mass spectrometry (LC-MS), which are very complex and expensive for large monitoring studies. Therefore, a simple but reliable multi-matrix high performance liquid chromatographic method, with fluorescence detection, was developed and validated to rapidly screen abnormal concentrations of bicalutamide in HWW and relevant contamination levels of bicalutamide in indoor surfaces (>100 pg/cm2), prior to confirmation by LC-MS. The method presents good linearity and relatively low method detection limits (HWW: 0.14 ng/mL; surfaces: 0.28 pg/cm2). Global uncertainty was below 20% for concentrations higher than 25 ng/mL (HWW) and 50 pg/cm2 (surfaces); global uncertainty was little affected by the matrix. Therefore, a multi-matrix assessment could be achieved with this method, thus contributing to a holistic quantification of bicalutamide along the cytostatic circuit. Bicalutamide was not detected in any of the grab samples from a Portuguese hospital, but an enlarged sampling is required to conclude about its occurrence and exposure risks.


Assuntos
Anilidas , Nitrilas , Compostos de Tosil , Cromatografia Líquida de Alta Pressão , Águas Residuárias/química
14.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34451851

RESUMO

Cytostatics are drugs used in cancer treatment, which pose serious risks to healthcare workers. Dermal absorption via surface contamination is the key exposure route; thus, rapid, reliable, and validated analytical methods for multicomponent detection are crucial to identify the exposure risk. A surface-wipe-sampling technique compatible with hospitals' safety requirements (gauze, 1 mL isopropanol) and a fast and simple extraction method (1 mL acetonitrile, 20 min ultrasonic bath, evaporation, reconstitution in 200 µL acetonitrile), coupled with liquid chromatography-tandem mass spectrometry analysis, were developed. It allowed identification and quantification of 13 cytostatics on surfaces: cyclophosphamide, doxorubicin, etoposide, ifosfamide, paclitaxel, bicalutamide, capecitabine, cyproterone, flutamide, imatinib, megestrol, mycophenolate mofetil, prednisone. Good linearity, sensitivity, and precision were achieved (R2 > 0.997, IDLs < 4.0 pg/cm2, average CV 16%, respectively). Accuracy for four model surfaces (melamine-coated wood, phenolic compact, steel 304, steel 316) was acceptable (80 ± 12%), except for capecitabine and doxorubicin. Global uncertainty is below 35% for concentrations above 100 pg/cm2 (except for capecitabine and doxorubicin)-a guidance value for relevant contamination. Method application in a Portuguese university hospital (28 samples) identified the presence of seven cytostatics, at concentrations below 100 pg/cm2, except for three samples. The widespread presence of cyclophosphamide evinces the necessity to review implemented procedures.

15.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198808

RESUMO

Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples.


Assuntos
Siloxanas/análise , Microextração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Ionização de Chama , Água Doce/química , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Rios/química , Águas Residuárias/química
16.
Sci Total Environ ; 795: 148855, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247083

RESUMO

As the number of cancer patients increases, so does the consumption of cytostatic drugs, which are commonly used in chemotherapy. These compounds are already ubiquitous in wastewater treatment plant (WWTP) effluents and natural water streams, revealing the urgent need for efficient technologies for their removal from the aqueous phase. This work presents the elimination of five cytostatics of concern, found in Portuguese WWTP effluents: bicalutamide (BICA), capecitabine (CAP), cyclophosphamide (CYC), ifosfamide (IFO) and mycophenolic acid (MPA), using non-catalytic ozonation. Experiments were performed starting from trace-level concentrations (1 µM) for all cytostatics at neutral pH (pH: 7.3 ± 0.1) and room temperature (23 ± 1 °C), employing different ozone dosages. Under the studied conditions, CAP and MPA were quickly eliminated by direct ozonation, whereas BICA, CYC and IFO were more slowly degraded, as they undergo a breakdown via hydroxyl radicals generation (HO) exclusively. Increasing the O3 dosage from 1 to 3 mgO3/mgDOC, CAP, MPA and IFO were completely removed, and BICA and CYC were converted more than 90% after 180 min. The presence of both inorganic ions and organic matter in real water matrices (river water, WWTP secondary effluent) did not affect the removal of CAP and MPA. Nonetheless, there was an inefficient and very fast O3 consumption that resulted in only around 30% elimination of BICA, CYC and IFO, even if the reaction time is extended.


Assuntos
Citostáticos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Citostáticos/análise , Humanos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 409: 124998, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513533

RESUMO

Recycling end-of-life tires (ELTs) reduces waste and provides a low-cost source of energy and materials such as crumb rubber, used as infill in artificial turf football pitches. However, some concerns were raised and remain about its safety. The potentially toxic human exposure to chemicals such as polycyclic aromatic hydrocarbons (PAHs), metals and others (volatile organic compounds (VOCs), plasticizers, antioxidants and additives) existing in ELTs (and in the resulting crumb rubber) is being studied, with no definitive conclusions. The literature existing so far suggests the possibility of their release from synthetic turf infill into the environment as water leachates and to the air surrounding the pitches, but there is the need of further research, also to assess the contribution of other materials present in synthetic turf. The database available comprised crumb rubber infill studies from pitches in 6 countries (USA, Norway, Netherlands, Portugal, Italy, Spain) and revealed a myriad of hazardous chemicals, with benzo[a]pyrene (n.d.-4.31 ± 3.95 mg/kg) and zinc (n.d.-14150 ± 1344 mg/kg) often exceeding the established limits. A dependence on indoor/outdoor conditions and the age of the source material was evaluated, often showing significative differences. From this standpoint, this review is intended to add knowledge about the presence of contaminants in this recycled material, aiming to ensure the safety of end-users and the environment.


Assuntos
Futebol Americano , Hidrocarbonetos Policíclicos Aromáticos , Exposição Ambiental/análise , Humanos , Itália , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Portugal , Borracha/toxicidade , Espanha
18.
Food Res Int ; 134: 109207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517949

RESUMO

The coffee oil is rich in diterpenes, mainly cafestol and kahweol, which are predominantly present in the esterified form with different fatty acids. Despite their beneficial effects including anti-angiogenic and anti-carcinogenic properties, they have been also associated with negative consequences such as elevation of blood cholesterol. Considering the coffee, it is an important human beverage with biological effects, including potentially health benefits or risks. Therefore, it may have important public health implications due to its widespread massive consumption, with major incidence in the varieties Arabica and Robusta. According to literatures, cafestol (182-1308 mg/100 g), kahweol (0-1265 mg/100 g) and 16-O-methycafestol (0-223 mg/100 g) are the main diterpenes in green and roasted coffee beans. Nevertheless, the coffee species, genetic background, and technological parameters like roasting and brewing have a clear effect on coffee diterpene content. Besides that, bibliographic data indicated that limited studies have specifically addressed the recent analytical techniques used for determination of this class of compounds, being HPLC and GC the most common approaches. For these reasons, this review aimed to actualize the occurrence and the profile of diterpenes in coffee matrices, focusing on the effect of species, roasting and brewing and on the other hand, introduce the current state on knowledge regarding coffee diterpenes determination which are nowadays highly regarded and widely used. In general, since diterpenes exhibit different health effects depending on their consumption dosage, several parameters needs to be carefully analyzed and considered when comparing the results.


Assuntos
Coffea/química , Diterpenos/química , Óleos de Plantas/química , Animais , Tecnologia de Alimentos , Humanos , Óleos de Plantas/farmacologia
19.
Sci Total Environ ; 740: 139995, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32559532

RESUMO

Cytostatics are highly toxic pharmaceuticals used in the treatment of cancer. These substances are partially excreted by the human body after administration. The inefficient removal of some cytostatics in urban wastewater treatment plants (WWTPs) allows them to reach surface waters and consequently the aquatic biota. However, information about their occurrence in urban wastewaters is available only for certain active ingredients. A liquid-liquid extraction method coupled to liquid-chromatography-tandem mass spectrometry analysis was developed, allowing the identification and quantification of 14 cytostatics in wastewater samples, avoiding the use of expensive sorbents. Moreover, satisfactory cytostatics' recoveries were achieved when the new method was applied to wastewaters from a Portuguese WWTP: average of (74 ± 21)% for the influents, (83 ± 22)% for secondary effluents, and (94 ± 24)% for tertiary effluents collected after UV treatment, except for imatinib. Doxorubicin, etoposide, megestrol and prednisone were completely eliminated in the first stage of the WWTP treatment (i.e. detected in the influents, but not in the effluents). Bicalutamide, capecitabine, cyclophosphamide, ifosfamide and mycophenolic acid were recalcitrant to UV radiation (i.e. detected in tertiary effluents), ifosfamide being the cytostatic most difficult to be removed (its concentration did not decrease from the entrance to the outlet of the WWTP). The risk at which aquatic organisms might be subjected, due to their exposure to cytostatics' concentrations 10-times lower than those found in the tertiary effluents, was estimated and it was verified that mycophenolic acid may represent a high risk. Although no risk was estimated for the other cytostatics, the risks associated to long-term and synergic exposure should not be ruled out.


Assuntos
Citostáticos/análise , Poluentes Químicos da Água/análise , Biota , Monitoramento Ambiental , Humanos , Extração Líquido-Líquido , Águas Residuárias/análise
20.
Sci Total Environ ; 706: 134933, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855643
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...