Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BioTech (Basel) ; 12(3)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754201

RESUMO

Targeted protein degradation is an attractive technology for cancer treatment due to its ability to overcome the unpredictability of the small molecule inhibitors that cause resistance mutations. In recent years, various targeted protein degradation strategies have been developed based on the ubiquitin-proteasome system in the cytoplasm or the autophagy-lysosomal system during endocytosis. In this review, we describe and compare technologies for the targeted inhibition and targeted degradation of the epidermal growth factor receptor (EGFR), one of the major proteins responsible for the onset and progression of many types of cancer. In addition, we develop an alternative strategy, called alloAUTO, based on the binding of new heterocyclic compounds to an allosteric site located in close proximity to the EGFR catalytic site. These compounds cause the targeted degradation of the transmembrane receptor, simultaneously activating both systems of protein degradation in cells. Damage to the EGFR signaling pathways promotes the inactivation of Bim sensor protein phosphorylation, which leads to the disintegration of the cytoskeleton, followed by the detachment of cancer cells from the extracellular matrix, and, ultimately, to cancer cell death. This hallmark of targeted cancer cell death suggests an advantage over other targeted protein degradation strategies, namely, the fewer cancer cells that survive mean fewer chemotherapy-resistant mutants appear.

2.
Eur J Med Chem ; 186: 111855, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740051

RESUMO

There is an increasing interest in the field of cancer therapy for small compounds targeting pyrimidine biosynthesis, and in particular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this metabolic pathway. Three available DHODH structures, featuring three different known inhibitors, were used as templates to screen in silico an original chemical library from Erevan University. This process led to the identification of P1788, a compound chemically related to the alkaloid cerpegin, as a new class of pyrimidine biosynthesis inhibitors. In line with previous reports, we investigated the effect of P1788 on the cellular innate immune response. Here we show that pyrimidine depletion by P1788 amplifies cellular response to both type-I and type II interferons, but also induces DNA damage as assessed by γH2AX staining. Moreover, the addition of inhibitors of the DNA damage response led to the suppression of the P1788 stimulatory effects on the interferon pathway. This demonstrates that components of the DNA damage response are bridging the inhibition of pyrimidine biosynthesis by P1788 to the interferon signaling pathway. Altogether, these results provide new insights on the mode of action of novel pyrimidine biosynthesis inhibitors and their development for cancer therapies.


Assuntos
Furanos/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Pirimidinas/antagonistas & inibidores , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Furanos/síntese química , Furanos/química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Piridonas/química , Pirimidinas/biossíntese , Relação Estrutura-Atividade
3.
Mol Psychiatry ; 25(6): 1245-1259, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619760

RESUMO

Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Anedonia/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacocinética , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos
4.
Cancers (Basel) ; 11(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374910

RESUMO

Targeting epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors (TKI) has been widely exploited to disrupt aberrant phosphorylation flux in cancer. However, a bottleneck of potent TKIs is the acquisition of drug resistance mutations, secondary effects, and low ability to attenuate tumor progression. We have developed an alternative means of targeting EGFR that relies on protein degradation through two consecutive routes, ultimately leading to cancer cell detachment-related death. We describe furfuryl derivatives of 4-allyl-5-[2-(4-alkoxyphenyl)-quinolin-4-yl]-4H-1,2,4-triazole-3-thiol that bind to and weakly inhibit EGFR tyrosine phosphorylation and induce strong endocytic degradation of the receptor in cancer cells. The compound-promoted depletion of EGFR resulted in the sequestration of non-phosphorylated Bim, which no longer ensured the integrity of the cytoskeleton machinery, as shown by the detachment of cancer cells from the extracellular matrix (ECM). Of particular note, the longer CH3(CH2)n chains in the terminal moiety of the anti-EGFR molecules confer higher hydrophobicity in the allosteric site located in the immediate vicinity of the catalytic pocket. Small compounds accelerated and enhanced EGFR and associated proteins degradation during EGF and/or glutamine starvation of cultures, thereby demonstrating high potency in killing cancer cells by simultaneously modulating signaling and metabolic pathways. We propose a plausible mechanism of anti-cancer action by small degraders through the allosteric site of EGFR. Our data represent a rational and promising perspective in the treatment of aggressive tumors.

5.
SLAS Discov ; 24(1): 25-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184441

RESUMO

Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Interferon gama/metabolismo , Células K562 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Luciferases/metabolismo , Projetos Piloto
6.
Sci Rep ; 7(1): 986, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428543

RESUMO

A main challenge in chemotherapy is to determine the in cellulo parameters modulating the drug concentration required for therapeutic action. It is absolutely urgent to understand membrane permeation and intracellular concentration of antibiotics in clinical isolates: passing the membrane barrier to reach the threshold concentration inside the bacterial periplasm or cytoplasm is the pivotal step of antibacterial activity. Ceftazidime (CAZ) is a key molecule of the combination therapy for treating resistant bacteria. We designed and synthesized different fluorescent CAZ derivatives (CAZ*, CAZ**) to dissect the early step of translocation-accumulation across bacterial membrane. Their activities were determined on E. coli strains and on selected clinical isolates overexpressing ß-lactamases. The accumulation of CAZ* and CAZ** were determined by microspectrofluorimetry and epifluorimetry. The derivatives were properly translocated to the periplasmic space when we permeabilize the outer membrane barrier. The periplasmic location of CAZ** was related to a significant antibacterial activity and with the outer membrane permeability. This study demonstrated the correlation between periplasmic accumulation and antibiotic activity. We also validated the method for approaching ß-lactam permeation relative to membrane permeability and paved the way for an original matrix for determining "Structure Intracellular Accumulation Activity Relationship" for the development of new therapeutic candidates.


Assuntos
Antibacterianos/farmacocinética , Ceftazidima/farmacocinética , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Ceftazidima/síntese química , Ceftazidima/química , Membrana Celular/química , Testes de Sensibilidade Microbiana , Microespectrofotometria , Estrutura Molecular , Periplasma/química , Permeabilidade
8.
Eur J Med Chem ; 127: 748-756, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27823890

RESUMO

Structure of bacterial envelope is one of the major factors contributing to Gram negative bacterial resistance. To develop new agents that target the bacterial membranes, we synthesized, by analogy with our previous peptide conjugates, new amphiphilic 3',4',6-trinaphthylmethylene neamines functionalized at position 5 through a short spacer by a chelating group, tris(2-pyridylmethyl)amine (TPA) and di-(picolyl)amine (DPA) and tetraazacyclotetradecane (Cyclam). ESI+ mass spectrometry analyses showed that neither Zn(II)(NeaDPA) nor Cu(II)(NeaCyclam) were stable in the Mueller Hinton (MH) medium used for antibacterial assays. In contrast Zn(NeaTPA) was stable in the MH medium. Interestingly, in MH, the free ligand NeaTPA was found bound to zinc, the zinc salt being the most abundant salt in this medium. Thus, the antibacterial activities of all compounds were evaluated as free ligands against E. coli strains, wild type AG100 and E. aerogenes EA289 (a clinical MDR strain that overexpresses AcrAB-TolC efflux pump), as well as AG100A an AcrAB- E. coli strain and EA298 a TolC- derivative. NeaCyclam and Zn(NeaTPA) were by far the most efficient compounds active against resistant isolate EA289 with MICs in the range 16-4 and 4 µM, respectively, while usual antibiotics such as ß-lactams and phenicols were inactive (MICs > 128) and ciprofloxacin was at 64 µM. Zn(NeaTPA) and NeaCyclam were shown to target and permeabilize the outer membrane of EA289 by promoting the cleavage of nitrocefin by periplasmic ß-lactamase. Moreover, all the neamine conjugates were able to block the efflux of 1,2'-dinaphthylamine in EA289, by acting on the efflux transporter located in the inner membrane. These membranotropic properties contribute to explain the activities of these neamine conjugates toward the MDR EA289 strain.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacter aerogenes/efeitos dos fármacos , Framicetina/química , Interações Hidrofóbicas e Hidrofílicas , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Antibacterianos/metabolismo , Permeabilidade da Membrana Celular , Cefalosporinas/metabolismo , DNA Bacteriano/metabolismo , Enterobacter aerogenes/citologia , Escherichia coli/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Compostos Organometálicos/metabolismo
9.
Sci Rep ; 6: 35429, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762275

RESUMO

Peptide deformylase (PDF) is considered an excellent target to develop antibiotics. We have performed an extensive characterization of a new PDF from the pathogen Streptococcus agalactiae, showing properties similar to other known PDFs. S. agalactiae PDF could be used as PDF prototype as it allowed to get complete sets of 3-dimensional, biophysical and kinetic data with virtually any inhibitor compound. Structure-activity relationship analysis with this single reference system allowed us to reveal distinct binding modes for different PDF inhibitors and the key role of a hydrogen bond in potentiating the interaction between ligand and target. We propose this protein as an irreplaceable tool, allowing easy and relevant fine comparisons between series, to design, challenge and validate novel series of inhibitors. As proof-of-concept, we report here the design and synthesis of effective specific bacterial PDF inhibitors of an oxadiazole series with potent antimicrobial activity against a multidrug resistant clinical isolate.

10.
Sci Rep ; 6: 21088, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883293

RESUMO

Activation of cell signaling by reactive chemicals and pollutants is an important issue for human health. It has been shown that lipophilic nitro-benzoxadiazole (NBD) compounds rapidly move across the plasma membrane and enhance Epidermal Growth Factor Receptor (EGFR) tyrosine phosphorylation in cancer cells. Unlike ligand-dependent activation, the mechanism of this induction relies on the generation of hydrogen peroxide, which is involved in the activation of the catalytic site of the receptor and the inactivation of protein tyrosine phosphatase PTP-1B. Production of H2O2 during redox transformation of NBD compounds is associated with the transition of a monomeric form of Cu/Zn superoxide dismutase 1 (SOD1) to stable dimers. The highly stable and functionally active SOD1 dimer, in the absence of adequate activities in downstream reactions, promotes the disproportionate production and accumulation of intracellular hydrogen peroxide shortly after exposure to NBD compounds. The intrinsic fluorescence of small compounds was used to demonstrate their binding to SOD1. Our data indicate that H2O2 and concomitantly generated electrophilic intermediates behave as independent entities, but all contribute to the biological reactivity of NBD compounds. This study opens a promising path to identify new biomarkers of oxidative/electrophilic stress in the progression of cancer and other diseases.

11.
Bioconjug Chem ; 25(10): 1811-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25192490

RESUMO

Many new designed molecules that target efficiently in vitro bacterial metalloproteases were completely inactive in cellulo against Gram negative bacteria. Their activities were limited by the severe restriction of the penetration/diffusion rate through the outer membrane barrier. To bypass this limitation, we have assayed the strategy of metallodrugs, to improve the delivery of hydroxamic acid inhibitors to peptide deformylase. In this metal-chaperone, to facilitate bacterial uptake, the ancillary ligand tris(2-pyridylmethyl)amine (TPA) or di(picolyl)amine (DPA) was functionalized by a tetrapeptide analogue of antimicrobial peptide, RWRW(OBn) (AA08 with TPA) and/or an efflux pump modulator PAßN (AA09 with TPA and AA27 with DPA). We prepared Co(III), Zn(II), and Cu(II) metallodrugs. Using a fluorescent hydroxamic acid, we showed that, in contrast to Cu(II) metallodrugs, Co(III) metallodrugs were stable in the Mueller Hinton (MH) broth during the time required for bacterial assays. The antibacterial activities were determined against E. coli strain wild-type (AG100) and E. coli strain deleted from acrAB efflux pump (AG100A). While none of the PDFinhs used in this study (SMP289 with an indole scaffold, AT015 and AT019 built on a 1,2,4-oxadiazole scaffold) displayed activity higher than 128 µM, all the metallodrugs were active with MICs around 8 µM both against AG100 and AG100A. However, compared to the activities of equimolar combinations of PDFinhs and the free chelating peptides (AA08, AA09, or AA27), they showed similar activities. A synergistic association between AT019 and AA08 or AA09 was determined using the fractional inhibitory concentration with AG100 and AG100A. Combinations of peptides lacking the chelating group with PDFinhs were inefficient. LC-MS analyses showed that the chelating peptides bind Zn(II) cation when incubated in MH broth. These results support the in situ formation of a zinc metallodrug, but we failed to detect it by LC-MS in MH. Nevertheless, this chelating peptides metalated with zinc act as permeabilizers which are more efficient than PAßN to facilitate the uptake of PDFinhs by Gram(-) bacteria.


Assuntos
Antibacterianos/química , Complexos de Coordenação/química , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Peptídeos/química , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Escherichia coli/enzimologia , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Piridinas/química , Piridinas/farmacologia
12.
ChemMedChem ; 7(6): 1020-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22489069

RESUMO

New series of acids and hydroxamic acids linked to five-membered heterocycles including furan, oxazole, 1,2,4- or 1,3,4-oxadiazole, and imidazole were synthesized and tested as inhibitors against the Fe(II) , Co(II) , and Mn(II) forms of E. coli methionine aminopeptidase (MetAP) and as antibacterial agents against wild-type and acrAB E. coli strains. 2-Aryloxazol-4-ylcarboxylic acids appeared as potent and selective inhibitors of the Co(II) MetAP form, with IC(50) values in the micromolar range, whereas 5-aryloxazol-2-ylcarboxylic acid regioisomers and 5-aryl-1,2,4-oxadiazol-3-ylcarboxylic acids were shown to be inefficient against all forms of EcMetAP. Regardless of the heterocycle, all the hydroxamic acids are highly potent inhibitors and are selective for the Mn(II) and Fe(II) forms, with IC(50) values between 1 and 2 µM. One indole hydroxamic acid that we previously reported as a potent inhibitor of E. coli peptide deformylase also demonstrated efficiency against EcMetAP. To gain insight into the positioning of the oxazole heterocycle with reversed substitutions at positions 2 and 5, X-ray crystal structures of EcMetAP-Mn complexed with two such oxazole hydroxamic acids were solved. Irrespective of the [metal]/[apo-MetAP] ratio, the active site consistently contains a dinuclear manganese center, with the hydroxamate as bridging ligand. Asp 97, which adopts a bidentate binding mode to the Mn2 site in the holoenzyme, is twisted in both structures toward the hydroxamate bridging ligand to favor the formation of a strong hydrogen bond. Most of the compounds show weak antibacterial activity against a wild-type E. coli strain. However, increased antibacterial activity was observed mainly for compounds with a 2-substituted phenyl group in the presence of the nonapeptide polymyxin B and phenylalanine-arginine-ß-naphthylamide as permeabilizer and efflux pump blocker, respectively, which boost the intracellular uptake of the inhibitors.


Assuntos
Aminopeptidases/antagonistas & inibidores , Antibacterianos/química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Ácidos Hidroxâmicos/química , Aminopeptidases/metabolismo , Antibacterianos/síntese química , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Compostos Ferrosos/química , Compostos Heterocíclicos/química , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Manganês/química , Metionil Aminopeptidases , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
13.
J Antimicrob Chemother ; 67(6): 1392-400, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22378679

RESUMO

OBJECTIVES: Bacterial drug resistance is a worrying public health problem and there is an urgent need for research and development to provide new antibacterial molecules. Peptide deformylase (PDF) is now a well-described intracellular target selected for the design of a new antibiotic group, PDF inhibitors (PDFIs). The initial bacterial susceptibility to an inhibitor of a cytoplasmic target is directly associated with the diffusion of the compound through the membrane barrier of Gram-negative bacteria and with its cytosolic accumulation at the required concentration. METHODS: We have recently demonstrated that the activity of different PDFIs is strongly dependent on the accumulation of the active molecules by using permeabilizing agents, efflux inhibitors or efflux-mutated strains. In this work we assessed various combination protocols using different putative inhibitors (PDFIs, methionine aminopeptidase inhibitors etc.) to improve antibacterial activity against various resistant Gram-negative bacteria. RESULTS: The maximum effect was observed when combining actinonin with a dual inhibitor of methionine aminopeptidase and PDF, this molecule being also able to interact with the target while actinonin is bound to the PDF active site. CONCLUSIONS: Such a combination of inhibitors acting on two tightly associated metabolic steps results in a cooperative effect on bacterial cells and opens an original way to combat multidrug-resistant bacteria.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia
14.
J Med Chem ; 50(1): 10-20, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201406

RESUMO

New classes of antibiotics are urgently needed to counter increasing levels of pathogen resistance. Peptide deformylase (PDF) was originally selected as a specific bacterial target, but a human homologue, the inhibition of which causes cell death, was recently discovered. We developed a dual-screening strategy for selecting highly effective compounds with low inhibition effect against human PDF. We selected a new scaffold in vitro that discriminated between human and bacterial PDFs. Analyses of structure-activity relationships identified potent antibiotics such as 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (6b) with the same mode of action in vivo as previously identified PDF inhibitors but without the apoptotic effects of these inhibitors in human cells.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/síntese química , Ácidos Hidroxâmicos/síntese química , Indóis/síntese química , Amidoidrolases/química , Antibacterianos/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Geobacillus stearothermophilus/enzimologia , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Indóis/química , Indóis/farmacologia , Células KB , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Relação Estrutura-Atividade
16.
J Inorg Biochem ; 99(3): 690-7, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15708789

RESUMO

A series of Zn(N2S2) complexes has been prepared, and characterized. They have different nitrogen donors such as, either two amidates, two amines, two imines or one amidate and one imine. A bis-amidato dithiolato complex has been structurally characterized by single crystal X-ray diffraction analysis, and exhibits a distorted tetrahedral structure. Oxidation of all these complexes with dioxirane or anhydrous H2O2 results in the formation of a unique product, the disulfonate species. Most often, zinc was found to be released during the course of the oxidation. The bis-imine/bis-sulfonate species is the only one to retain zinc. This complex was crystallized with two pyridine molecules. Its crystal structure reveals a distorted octahedral environment around the zinc cation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...