Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | SciELO Preprints | ID: pps-8304

RESUMO

Colli-Silva et al.1 recently proposed that cupuaçu (Theobroma grandiflorum) was domesticated in northwestern Amazonia as a selection from its sister species, cupuí (T. subincanum). This proposal ignores long-term research in taxonomy, botany, biogeography, and genetics about Theobroma, including cupuaçu. Our review of the research that was ignored and of Colli-Silva et al.'s results demonstrates that cupuaçu is a valid species, as they now agree2, but cupuí may be paraphyletic, the distribution of wild cupuaçu was not included in their samples so the origin of domestication continues unknown, precolonial archaeology lacks remains that can be attributed to either species, historical linguistics indicates that the term cupuaçu references the species' wild distribution and is a recent introduction in northwestern Amazonia, history suggests that cupuaçu started to be domesticated during the last 100-200 years, and the genomics results are not about the domestication of cupuaçu because it is a valid species and its wild distribution was not sampled.

2.
Plants (Basel) ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611562

RESUMO

Platonia insignis is a fruit tree native to Brazil of increasing economic importance, with its pulp trading among the highest market values. This study aimed to evaluate the structure and genomic diversity of P. insignis (bacurizeiro) accessions from six locations in the Brazilian States of Roraima, Amazonas, Pará (Amazon biome), and Maranhão (Cerrado biome). A total of 2031 SNP markers were obtained using genotyping-by-sequencing (GBS), from which 625 outlier SNPs were identified. High genetic structure was observed, with most of the genetic variability (59%) concentrated among locations, mainly between biomes (Amazon and Cerrado). A positive and significant correlation (r = 0.85; p < 0.005) was detected between genetic and geographic distances, indicating isolation by distance. The highest genetic diversity was observed for the location in the Cerrado biome (HE = 0.1746; HO = 0.2078). The locations in the Amazon biome showed low genetic diversity indexes with significant levels of inbreeding. The advance of urban areas, events of burning, and expansion of agricultural activities are most probably the main factors for the genetic diversity reduction of P. insignis. Approaches to functional analysis showed that most of the outlier loci found may be related to genes involved in cellular and metabolic processes.

3.
Acta Trop ; 252: 107144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336343

RESUMO

Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Feminino , Humanos , Triatoma/genética , Brasil/epidemiologia , Trypanosoma cruzi/genética , Doença de Chagas/epidemiologia , Genética Populacional , Genômica
4.
Evol Appl ; 16(7): 1257-1273, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492151

RESUMO

Human activity has diminished forests in different terrestrial ecosystems. This is well illustrated in the Brazilian Atlantic Forest, which still hosts high levels of species richness and endemism, even with only 28% of its original extent remaining. The consequences of such forest loss in remaining populations can be investigated with several approaches, including the genomic perspective, which allows a broader understanding of how human disturbance influences the genetic variability in natural populations. In this context, our study investigated the genomic responses of Euterpe edulis Martius, an endangered palm tree, in forest remnants located in landscapes presenting different forest cover amount and composed by distinct bird assemblage that disperse its seeds. We sampled 22 areas of the Brazilian Atlantic Forest in four regions using SNP markers inserted into transcribed regions of the genome of E. edulis, distinguishing neutral loci from those putatively under natural selection (outlier). We demonstrate that populations show patterns of structure and genetic variability that differ between regions, as a possible reflection of deforestation and biogeographic histories. Deforested landscapes still maintain high neutral genetic diversity due to gene flow over short distances. Overall, we not only support previous evidence with microsatellite markers, but also show that deforestation can influence the genetic variability outlier, in the scenario of selective pressures imposed by these stressful environments. Based on our findings, we suggest that, to protect genetic diversity in the long term, it is necessary to reforest and enrich deforested areas, using seeds from populations in the same management target region.

5.
PLoS One ; 18(4): e0284587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071644

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a significant pest of many crops in the world and it is native to the Americas, where the species has shown the ability to rapidly evolve resistance to insecticides and transgenic plants. Despite the importance of this species, there is a gap in the knowledge regarding the genetic structure of FAW in South America. Here, we examined the genetic diversity of FAW populations across a wide agricultural area of Brazil and Argentina using a Genotyping-by-Sequencing (GBS) approach. We also characterized samples by their host strain based on mitochondrial and Z-linked genetic markers. The GBS methodology enabled us to discover 3309 SNPs, including neutral and outlier markers. Data showed significant genetic structure between Brazil and Argentina populations, and also among the Argentinian ecoregions. Populations inside Brazil showed little genetic differentiation indicating high gene flow among locations and confirming that structure is related to the presence of corn and rice strains. Outlier analysis indicated 456 loci putatively under selection, including genes possibly related to resistance evolution. This study provides clarification of the population genetic structure of FAW in South America and highlights the importance of genomic research to understand the risks of spread of resistance genes.


Assuntos
Metagenômica , Controle de Pragas , Animais , Spodoptera/genética , Genótipo , Brasil , Zea mays/genética
6.
PLoS One ; 17(11): e0276408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327224

RESUMO

Copernicia prunifera (Miller) H. E. Moore is a palm tree native to Brazil. The products obtained from its leaf extracts are a source of income for local families and the agroindustry. Owing to the reduction of natural habitats and the absence of a sustainable management plan, the maintenance of the natural populations of this palm tree has been compromised. Therefore, this study aimed to evaluate the diversity and genetic structure of 14 C. prunifera populations using single nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing (GBS) to provide information that contributes to the conservation of this species. A total of 1,013 SNP markers were identified, of which 84 loci showed outlier behavior and may reflect responses to natural selection. Overall, the level of genomic diversity was compatible with the biological aspects of this species. The inbreeding coefficient (f) was negative for all populations, indicating excess heterozygotes. Most genetic variations occurred within populations (77.26%), and a positive correlation existed between genetic and geographic distances. The population structure evaluated through discriminant analysis of principal components (DAPC) revealed low genetic differentiation between populations. The results highlight the need for efforts to conserve C. prunifera as well as its distribution range to preserve its global genetic diversity and evolutionary potential.


Assuntos
Arecaceae , Metagenômica , Humanos , Arecaceae/genética , Deriva Genética , Seleção Genética , Endogamia , Polimorfismo de Nucleotídeo Único , Variação Genética
7.
PLoS One ; 17(7): e0266304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901127

RESUMO

The Brazilian palm fruits and hearts-of-palm of Euterpe edulis, E. oleracea and E. precatoria are an important source for agro-industrial production, due to overexploitation, conservation strategies are required to maintain genetic diversity. Chloroplast genomes have conserved sequences, which are useful to explore evolutionary questions. Besides the plastid DNA, genome skimming allows the identification of other genomic resources, such as single nucleotide polymorphisms (SNPs), providing information about the genetic diversity of species. We sequenced the chloroplast genome and identified gene content in the three Euterpe species. We performed comparative analyses, described the polymorphisms among the chloroplast genome sequences (repeats, indels and SNPs) and performed a phylogenomic inference based on 55 palm species chloroplast genomes. Finally, using the remaining data from genome skimming, the nuclear and mitochondrial reads, we identified SNPs and estimated the genetic diversity among these Euterpe species. The Euterpe chloroplast genomes varied from 159,232 to 159,275 bp and presented a conserved quadripartite structure with high synteny with other palms. In a pairwise comparison, we found a greater number of insertions/deletions (indels = 93 and 103) and SNPs (284 and 254) between E. edulis/E. oleracea and E. edulis/E. precatoria when compared to E. oleracea/E. precatoria (58 indels and 114 SNPs). Also, the phylogeny indicated a closer relationship between E. oleracea/E. precatoria. The nuclear and mitochondrial genome analyses identified 1,077 SNPs and high divergence among species (FST = 0.77), especially between E. edulis and E. precatoria (FST = 0.86). These results showed that, despite the few structural differences among the chloroplast genomes of these Euterpe palms, a differentiation between E. edulis and the other Euterpe species can be identified by point mutations. This study not only brings new knowledge about the evolution of Euterpe chloroplast genomes, but also these new resources open the way for future phylogenomic inferences and comparative analyses within Arecaceae.


Assuntos
Arecaceae , Euterpe , Genoma de Cloroplastos , Arecaceae/genética , Brasil , Ecossistema , Filogenia
8.
Ann Bot ; 129(6): 737-751, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35390119

RESUMO

BACKGROUND AND AIMS: The lowlands of South America appear to be remarkably important in the evolutionary history of maize, due to new evidence that suggests that maize dispersed from Mexico and arrived in this region in a state of partial domestication. This study aimed to identify dispersal patterns of maize genetic diversity in this part of the continent. METHODS: A total of 170 maize accessions were characterized with 4398 single nucleotide polymorphisms (SNPs) and analysed to determine if maize dispersal was associated with types of endosperm and indigenous language families. KEY RESULTS: Four genetic groups were identified in the discriminant analysis of principal components and five groups in the cluster analysis (neighbour-joining method). The groups were structured according to the predominance of endosperm types (popcorn, floury, flint/semi-flint). Spatial principal component analysis of genetic variation suggests different dispersal patterns for each endosperm type and can be associated with hypotheses of expansions of different indigenous groups. CONCLUSIONS: From a possible origin in Southwestern Amazonia, different maize dispersal routes emerged: (1) towards Northern Amazonia, which continued towards the Caatinga and south-eastern Atlantic Forest (Floury); (2) towards Southern Brazil, passing through the Cerrado and Southern Atlantic Forest reaching the Pampa region (Floury); and (3) along the Atlantic Coast, following Tupi movements originating from two separate expansions: one (Tupinamba) from north to south, and the other (Guarani) in the opposite direction, from south to north (flint, floury and popcorn).


Assuntos
Endosperma , Zea mays , Brasil , Endosperma/genética , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único , América do Sul , Zea mays/genética
9.
Sci Rep ; 12(1): 1268, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075210

RESUMO

Knowledge about genetic diversity is essential to promote effective use and conservation of crops, because it enables farmers to adapt their crops to specific needs and is the raw material for breeding. Manioc (Manihot esculenta ssp. esculenta) is one of the world's major food crops and has the potential to help achieve food security in the context of on-going climate changes. We evaluated single nucleotide polymorphisms in traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We assessed genome-wide diversity and identified selective signatures contrasting varieties from different biomes with samples of manioc's wild ancestor M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses that might have been important for the crop's domestication and diversification resulting from cultivation in different environments. Additionally, high neutral genetic diversity within groups of varieties from different biomes and low genetic divergence among biomes reflect the complexity of manioc's evolutionary dynamics under traditional cultivation. Our results exemplify how smallholder practices contribute to conserve manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.


Assuntos
Genoma de Planta , Manihot/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Brasil , Domesticação , Ecossistema
10.
PLoS One ; 16(7): e0241025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283830

RESUMO

Acrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm (Elaeis guineenses) even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of Acrocomia genus, including 172 samples from seven species, with a focus on A. aculeata with 117 samples covering a wide geographical area of occurrence of the species, using Single Nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS).The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


Assuntos
Arecaceae/genética , Genômica , Polimorfismo de Nucleotídeo Único , Genética Populacional , Melhoramento Vegetal
11.
Front Plant Sci ; 11: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161603

RESUMO

Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.

12.
Evol Appl ; 13(2): 342-361, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993081

RESUMO

Amazonia is a major world centre of plant domestication, but the genetics of domestication remains unclear for most Amazonian crops. Manioc (Manihot esculenta) is the most important staple food crop that originated in this region. Although manioc is relatively well-studied, little is known about the diversification of bitter and sweet landraces and how they were dispersed across Amazonia. We evaluated single nucleotide polymorphisms (SNPs) in wild and cultivated manioc to identify outlier SNPs putatively under selection and to assess the neutral genetic structure of landraces to make inferences about the evolution of the crop in Amazonia. Some outlier SNPs were in putative manioc genes possibly related to plant architecture, transcriptional regulation and responses to stress. The neutral SNPs revealed contrasting genetic structuring for bitter and sweet landraces. The outlier SNPs may be signatures of the genomic changes resulting from domestication, while the neutral genetic structure suggests independent dispersals for sweet and bitter manioc, possibly related to the earlier domestication and diversification of the former. Our results highlight the role of ancient peoples and current smallholders in the management and conservation of manioc genetic diversity, including putative genes and specific genetic resources with adaptive potential in the context of climate change.

13.
PLoS One ; 14(7): e0220031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339922

RESUMO

The sugarcane borer moth, Diatraea saccharalis, is one of the most important pests of sugarcane and maize crops in the Western Hemisphere. The pest is widespread throughout South and Central America, the Caribbean region and the southern United States. One of the most intriguing features of D. saccharalis population dynamics is the high rate of range expansion reported in recent years. To shed light on the history of colonization of D. saccharalis, we investigated the genetic structure and diversity in American populations using single nucleotide polymorphism (SNPs) markers throughout the genome and sequences of the mitochondrial gene cytochrome oxidase (COI). Our primary goal was to propose possible dispersal routes from the putative center of origin that can explain the spatial pattern of genetic diversity. Our findings showed a clear correspondence between genetic structure and the geographical distributions of this pest insect on the American continents. The clustering analyses indicated three distinct groups: one composed of Brazilian populations, a second group composed of populations from El Salvador, Mexico, Texas and Louisiana and a third group composed of the Florida population. The predicted time of divergence predates the agriculture expansion period, but the pattern of distribution of haplotype diversity suggests that human-mediated movement was most likely the factor responsible for the widespread distribution in the Americas. The study of the early history of D. saccharalis promotes a better understanding of range expansion, the history of invasion, and demographic patterns of pest populations in the Americas.


Assuntos
Distribuição Animal , Evolução Molecular , Lepidópteros/genética , Filogenia , Agricultura , Animais , Código de Barras de DNA Taxonômico , Ecossistema , Lepidópteros/classificação , América do Norte , Polimorfismo de Nucleotídeo Único , América do Sul
14.
Ecol Evol ; 8(22): 11143-11157, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519432

RESUMO

Euterpe precatoria, known as açaí do Amazonas, is a regionally important palm of the Amazon rainforest for the fruit production through extractive agriculture. Little information is available with regard to genetic diversity, gene flow, and spatial genetic structure (SGS) of açaí populations, which are essential for the use, management, and conservation of genetic resources of the species. This research aimed to assess the genetic diversity, inbreeding level, SGS, and gene flow in four ontogenetic stages of a natural E. precatoria population in the Brazilian Amazon, based on 18 microsatellite loci. The study was carried out in a natural population dispersed in an area of about 10 ha. Leaf tissues of 248 plants were mapped and sampled and classified into four ontogenetic stages: reproductive (59), immature (70), young (60), and seedling (59). Genetic diversity indices were high for all ontogenetic stages. The fixation index (F) for all ontogenetic stages was not significantly different from zero, indicating the absence of inbreeding. A significant SGS was found for all ontogenetic stages (68-110 m), indicating seed dispersal over short distances. Paternity analysis detected pollen immigration of 39.1%, a selfing rate of 4.2%, and a mean pollen dispersal distance within the population of 531 m. The results indicate substantial allele input in the population via pollen immigration, contributing to the maintenance of the genetic diversity of the population. However, within a population, the renewal with new progenies selected from seed plants spaced at least 110 m apart is important to avoid collecting seeds from related plants.

15.
Ecol Evol ; 8(13): 6558-6574, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038757

RESUMO

The Gran Chaco is the largest continuous region of the South American dry forest, spanning Argentina, Paraguay, Bolivia, and Brazil. Prosopis rubriflora and Prosopis ruscifolia are typical tree species of chaquenian area forests, which have been subjected to continuous fragmentation caused by cattle raising. This study evaluated P. rubriflora and P. ruscifolia in areas with varying levels of disturbance. We investigated the contemporary genetic diversities of both species in areas with distinct anthropogenic disturbances. Even with a lower heterozygote frequency, disturbed areas can provide important storage for alleles, allowing the maintenance of diversity. The genetic diversity of P. rubriflora was surprisingly similar to that of P. ruscifolia (He = 0.59 and He = 0.60, respectively) even with very different distribution ranges of both species. However, P. ruscifolia exhibited a higher intrapopulation fixation index than P. rubriflora. P. rubriflora showed evidence of bottlenecking in 64% of the sampled areas, while P. ruscifolia showed such evidence in 36% of the sampled areas. Additionally, P. rubriflora had two distinct populations due to its disjunctive geographic distribution, whereas P. ruscifolia had a single population that exhibited few signs of population structure in some areas, possibly due to the main pollinators presenting a short range of dispersion. Our results suggest that 42 Chaco areas should be conserved to retain the minimum of 500 individuals necessary to maintain genetic diversity for 100-1,000 generations. This study improves our understanding of these two Prosopis species and provides information for the conservation of their genetic diversities.

16.
PLoS One ; 13(6): e0198593, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874280

RESUMO

Annatto (Bixa orellana L.) is a tropical American crop, commercially valuable due to its application in the food and cosmetics industries as a natural dye. The wild ancestor of cultivated annatto is B. orellana var. urucurana. Although never cultivated, this variety occurs in open forests and anthropogenic landscapes, and is always associated with riparian environments. In this study, we evaluated the genetic diversity and structure of B. orellana var. urucurana populations in Brazilian Amazonia using 16 microsatellite loci. We used Ecological Niche Modeling (ENM) to characterize the potential geographical range of this variety in northern South America. We analyzed 170 samples from 10 municipalities in the states of Rondônia, Pará and Roraima. A total of 194 alleles was observed, with an average of 12.1 alleles per locus. Higher levels of expected (HE) than observed (HO) heterozygosities were found for all populations. Bayesian analysis, Neighbor-Joining dendrograms and PCAs suggest the existence of three strongly structured groups of populations. A strong and positive correlation between genetic and geographic distances was found, suggesting that genetic differentiation might be caused by geographic isolation. From species distribution modelling, we detected that South Rondônia, Madre di Dios River basin, Llanos de Mojos, Llanos de Orinoco and eastern Ecuador are highly suitable areas for wild annatto to occur, providing additional targets for future exploration and conservation. Climatic adaptation analyses revealed strong differentiation among populations, suggesting that precipitation plays a key role in wild annatto's current and potential distribution patterns.


Assuntos
Aclimatação/genética , Bixaceae/genética , Carotenoides/genética , Conservação dos Recursos Naturais , Variação Genética/genética , Repetições de Microssatélites/genética , Extratos Vegetais/genética , Brasil , Florestas
17.
Ann Bot ; 121(4): 625-639, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29309531

RESUMO

Background and Aims: Amazonia is a major world centre of plant domestication, but little is known about how the crops were dispersed across the region. Manioc (Manihot esculenta) was domesticated in the south-western Amazon basin, and is the most important staple food crop that originated in Amazonia. Current contrasting distributions may reflect distinct histories of dispersal of bitter and sweet manioc landraces. To produce new insights into the evolutionary history of the crop, we investigated the contemporary genetic diversity and structure of bitter and sweet manioc along major Amazonian rivers. Methods: The patterns of genetic structure and diversity of wild and cultivated sweet and bitter manioc with four chloroplast and 14 nuclear microsatellite markers were evaluated. Results were interpreted in terms of the crop's dispersal. Key results: No phylogeographic patterns among rivers were detected, and genetic structure among rivers was confounded by the bitter-sweet divergence. However, differences in the distribution of nuclear diversity and somewhat distinctive patterns of genetic structure across rivers were observed within bitter and sweet manioc. Conclusions: Various pre-Columbian and post-European conquest events in the history of Amazonian occupation may explain the absence of clearer patterns of genetic structure. However, the wide distribution of the most common chloroplast haplotype agrees with an early dispersal of manioc across Brazilian Amazonia. Furthermore, differences in genetic structure and in the spatial distribution of genetic diversity suggest that bitter and sweet manioc had distinct dispersal histories. Knowledge about how prehistoric and contemporary Amazonian peoples manage their crops is valuable for the maintenance and conservation of the impressive diversity of their native crops.


Assuntos
Cloroplastos/genética , Manihot/genética , Brasil , DNA de Plantas/genética , Domesticação , Variação Genética/genética , Haplótipos/genética , Manihot/anatomia & histologia , Repetições de Microssatélites/genética , Filogenia , Melhoramento Vegetal , Rios
18.
PLoS One ; 12(11): e0186266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145390

RESUMO

The sugarcane borer or corn stalk borer, Diatraea Guilding is polyphagous insect pest of many important crops such as corn, sorghum and sugarcane. Losses arising from the attack of Diatraea species have been a serious problem, which may cause loss in sugarcane production around 0.25% in sugar, 0.20% in alcohol and 0.77% of body weight for every 1% infestation and up to 21% in corn production fields. In Brazil, the most commonly reported species are Diatraea saccharalis (Fabricius, 1794) and Diatraea impersonatella (Walker, 1863) (= D. flavipennella). However, multiple other species of Diatraea have been identified in Brazil according to the literature. Currently, little information exists on the presence of the other species causing injury to sugarcane and corn. The objectives of this study were to improve the accuracy of species assignment, evaluate the population genetic structure, and address many of the outstanding questions of systematics and evolution of Brazilian populations of D. saccharalis. To address these main questions, classical taxonomic methods were used, focused on morphological characterization of the reproductive organs, especially the male genitalia. In addition, genetic studies were performed using simple sequence repeats (SSR) and a fragment of cytochrome C oxidase subunit I (COI) gene. The data and findings from this research will contribute to the understanding of evolutionary aspects of insect pests in order to develop more effective and sustainable population management practices.


Assuntos
Evolução Molecular , Lepidópteros/genética , Animais , Brasil , Feminino , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Lepidópteros/classificação , Masculino , Repetições de Microssatélites/genética , Filogenia , Polimorfismo Genético , Especificidade da Espécie
20.
Genet. mol. biol ; 40(2): 468-479, Apr.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892409

RESUMO

Abstract Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...