Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496668

RESUMO

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

2.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411286

RESUMO

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Síndromes Epilépticas , Adulto , Humanos , Epilepsia do Lobo Temporal/complicações , Fenitoína , Estudos Transversais , Síndromes Epilépticas/complicações , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Convulsões/complicações , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
3.
Sci Rep ; 14(1): 1758, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242927

RESUMO

Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals. We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI). The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls. Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI). Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.


Assuntos
Encefalopatias , COVID-19 , Disfunção Cognitiva , Substância Branca , Humanos , Adulto , Imagem de Tensor de Difusão/métodos , Estudos Transversais , COVID-19/complicações , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Transtornos da Memória , Fadiga/etiologia
4.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961570

RESUMO

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

5.
medRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014004

RESUMO

The rapid and constant development of deep learning (DL) strategies is pushing forward the quality of object segmentation in images from diverse fields of interest. In particular, these algorithms can be very helpful in delineating brain abnormalities (lesions, tumors, lacunas, etc), enabling the extraction of information such as volume and location, that can inform doctors or feed predictive models. In this study, we describe ResectVol DL, a fully automatic tool developed to segment resective lacunas in brain images of patients with epilepsy. ResectVol DL relies on the nnU-Net framework that leverages the 3D U-Net deep learning architecture. T1-weighted MRI datasets from 120 patients (57 women; 31.5 ± 15.9 years old at surgery) were used to train (n=78) and test (n=48) our tool. Manual segmentations were carried out by five different raters and were considered as ground truth for performance assessment. We compared ResectVol DL with two other fully automatic methods: ResectVol 1.1.2 and DeepResection, using the Dice similarity coefficient (DSC), Pearson's correlation coefficient, and relative difference to manual segmentation. ResectVol DL presented the highest median DSC (0.92 vs. 0.78 and 0.90), the highest correlation coefficient (0.99 vs. 0.63 and 0.94) and the lowest median relative difference (9 vs. 44 and 12 %). Overall, we demonstrate that ResectVol DL accurately segments brain lacunas, which has the potential to assist in the development of predictive models for postoperative cognitive and seizure outcomes.

6.
Sci Rep ; 13(1): 13321, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587190

RESUMO

Focal cortical dysplasia (FCD) is a brain malformation that causes medically refractory epilepsy. FCD is classified into three categories based on structural and cellular abnormalities, with FCD type II being the most common and characterized by disrupted organization of the cortex and abnormal neuronal development. In this study, we employed cell-type deconvolution and single-cell signatures to analyze bulk RNA-seq from multiple transcriptomic studies, aiming to characterize the cellular composition of brain lesions in patients with FCD IIa and IIb subtypes. Our deconvolution analyses revealed specific cellular changes in FCD IIb, including neuronal loss and an increase in reactive astrocytes (astrogliosis) when compared to FCD IIa. Astrogliosis in FCD IIb was further supported by a gene signature analysis and histologically confirmed by glial fibrillary acidic protein (GFAP) immunostaining. Overall, our findings demonstrate that FCD II subtypes exhibit differential neuronal and glial compositions, with astrogliosis emerging as a hallmark of FCD IIb. These observations, validated in independent patient cohorts and confirmed using immunohistochemistry, offer novel insights into the involvement of glial cells in FCD type II pathophysiology and may contribute to the development of targeted therapies for this condition.


Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical do Grupo I , Humanos , Gliose , Neuroglia
7.
Front Neurol ; 14: 1023950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006485

RESUMO

Introduction: Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. According to the 2022 International League Against Epilepsy classification, FCD type II is characterized by dysmorphic neurons (IIa and IIb) and may be associated with balloon cells (IIb). We present a multicentric study to evaluate the transcriptomes of the gray and white matters of surgical FCD type II specimens. We aimed to contribute to pathophysiology and tissue characterization. Methods: We investigated FCD II (a and b) and control samples by performing RNA-sequencing followed by immunohistochemical validation employing digital analyses. Results: We found 342 and 399 transcripts differentially expressed in the gray matter of IIa and IIb lesions compared to controls, respectively. Cholesterol biosynthesis was among the main enriched cellular pathways in both IIa and IIb gray matter. Particularly, the genes HMGCS1, HMGCR, and SQLE were upregulated in both type II groups. We also found 12 differentially expressed genes when comparing transcriptomes of IIa and IIb lesions. Only 1 transcript (MTRNR2L12) was significantly upregulated in FCD IIa. The white matter in IIa and IIb lesions showed 2 and 24 transcripts differentially expressed, respectively, compared to controls. No enriched cellular pathways were detected. GPNMB, not previously described in FCD samples, was upregulated in IIb compared to IIa and control groups. Upregulations of cholesterol biosynthesis enzymes and GPNMB genes in FCD groups were immunohistochemically validated. Such enzymes were mainly detected in both dysmorphic and normal neurons, whereas GPNMB was observed only in balloon cells. Discussion: Overall, our study contributed to identifying cortical enrichment of cholesterol biosynthesis in FCD type II, which may correspond to a neuroprotective response to seizures. Moreover, specific analyses in either the gray or the white matter revealed upregulations of MTRNR2L12 and GPNMB, which might be potential neuropathological biomarkers of a cortex chronically exposed to seizures and of balloon cells, respectively.

8.
Radiol Bras ; 55(5): 273-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320375

RESUMO

Objective: To evaluate the performance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography ( 18F-FDG PET/CT) in localizing epileptogenic zones, comparing 18F-FDG injection performed in the traditional interictal period with that performed near the time of a seizure. Materials and Methods: We evaluated patients with refractory epilepsy who underwent 18F-FDG PET/CT. The reference standards for localization of the epileptogenic zone were histopathology and follow-up examinations (in patients who underwent surgery) or serial electroencephalography (EEG) recordings, long-term video EEG, and magnetic resonance imaging (in patients who did not). The 18F-FDG injection was performed whether the patient had an epileptic seizure during the EEG monitoring period or not. The 18F-FDG PET/CT results were categorized as concordant or discordant with the reference standards. Results: Of the 110 patients evaluated, 10 were in a postictal group (FDG injection after a seizure) and 100 were in the interictal group. The 18F-FDG PET/CT was concordant with the reference standards in nine (90%) of the postictal group patients and in 60 (60%) of the interictal group patients. Among the nine postictal group patients in whom the results were concordant, the 18F-FDG PET/CT showed hypermetabolism and hypometabolism in the epileptogenic zone in four (44.4%) and five (55.6%), respectively. Conclusion: Our data indicate that 18F-FDG PET/CT is a helpful tool for localization of the epileptogenic zone and that EEG monitoring is an important means of correlating the findings. In addition, postictal 18F-FDG PET/CT is able to identify the epileptogenic zone by showing either hypometabolism or hypermetabolism.


Objetivo: Avaliar a capacidade da PET/CT FDG detectar a zona epileptogênica, com injeção da FDG realizada tanto no período interictal como perto de uma crise epiléptica. Materiais e Métodos: Foram avaliados pacientes com epilepsia de difícil controle que realizaram PET/CT FDG. A zona epileptogênica foi definida pelo follow up/anatomopatológico ou eletroencefalogramas (EEGs) seriados, telemetria e ressonância magnética. PET/CT FDG foi realizada independentemente se o paciente tinha crise epiléptica durante a monitoração com EEG ou no período interictal. Os resultados foram definidos como concordantes ou discordantes, comparando com a zona epileptogênica. Resultados: Foram incluídos no estudo 110 pacientes: 10 no grupo pós-ictal (injeção de FDG depois da crise) e 100 no grupo interictal. A PET/CT FDG foi concordante com a zona epileptogênica em nove pacientes do grupo pós-ictal (90%) e 60 pacientes do grupo interictal (60%). Entre os nove pacientes concordantes do grupo pós-ictal, quatro mostraram hipermetabolismo (44,4%) e cinco mostraram hipometabolismo na zona epileptogênica (55,6%). Conclusão: Nossos resultados confirmaram que a PET/CT FDG é uma ferramenta útil na localização da zona epileptogênica e a monitoração com EEG é muito importante para correlacionar os achados. Além disso, PET/CT FDG realizada no período pós-ictal é capaz de identificar a zona epileptogênica, mostrando tanto hipometabolismo como hipermetabolismo.

9.
Radiol. bras ; 55(5): 273-279, Sept.-Oct. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1406525

RESUMO

Abstract Objective: To evaluate the performance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography ( 18F-FDG PET/CT) in localizing epileptogenic zones, comparing 18F-FDG injection performed in the traditional interictal period with that performed near the time of a seizure. Materials and Methods: We evaluated patients with refractory epilepsy who underwent 18F-FDG PET/CT. The reference standards for localization of the epileptogenic zone were histopathology and follow-up examinations (in patients who underwent surgery) or serial electroencephalography (EEG) recordings, long-term video EEG, and magnetic resonance imaging (in patients who did not). The 18F-FDG injection was performed whether the patient had an epileptic seizure during the EEG monitoring period or not. The 18F-FDG PET/CT results were categorized as concordant or discordant with the reference standards. Results: Of the 110 patients evaluated, 10 were in a postictal group (FDG injection after a seizure) and 100 were in the interictal group. The 18F-FDG PET/CT was concordant with the reference standards in nine (90%) of the postictal group patients and in 60 (60%) of the interictal group patients. Among the nine postictal group patients in whom the results were concordant, the 18F-FDG PET/CT showed hypermetabolism and hypometabolism in the epileptogenic zone in four (44.4%) and five (55.6%), respectively. Conclusion: Our data indicate that 18F-FDG PET/CT is a helpful tool for localization of the epileptogenic zone and that EEG monitoring is an important means of correlating the findings. In addition, postictal 18F-FDG PET/CT is able to identify the epileptogenic zone by showing either hypometabolism or hypermetabolism.


Resumo Objetivo: Avaliar a capacidade da PET/CT FDG detectar a zona epileptogênica, com injeção da FDG realizada tanto no período interictal como perto de uma crise epiléptica. Materiais e Métodos: Foram avaliados pacientes com epilepsia de difícil controle que realizaram PET/CT FDG. A zona epileptogênica foi definida pelo follow up/anatomopatológico ou eletroencefalogramas (EEGs) seriados, telemetria e ressonância magnética. PET/CT FDG foi realizada independentemente se o paciente tinha crise epiléptica durante a monitoração com EEG ou no período interictal. Os resultados foram definidos como concordantes ou discordantes, comparando com a zona epileptogênica. Resultados: Foram incluídos no estudo 110 pacientes: 10 no grupo pós-ictal (injeção de FDG depois da crise) e 100 no grupo interictal. A PET/CT FDG foi concordante com a zona epileptogênica em nove pacientes do grupo pós-ictal (90%) e 60 pacientes do grupo interictal (60%). Entre os nove pacientes concordantes do grupo pós-ictal, quatro mostraram hipermetabolismo (44,4%) e cinco mostraram hipometabolismo na zona epileptogênica (55,6%). Conclusão: Nossos resultados confirmaram que a PET/CT FDG é uma ferramenta útil na localização da zona epileptogênica e a monitoração com EEG é muito importante para correlacionar os achados. Além disso, PET/CT FDG realizada no período pós-ictal é capaz de identificar a zona epileptogênica, mostrando tanto hipometabolismo como hipermetabolismo.

10.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35951647

RESUMO

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Assuntos
Encéfalo , COVID-19 , Viroses do Sistema Nervoso Central , SARS-CoV-2 , Astrócitos/patologia , Astrócitos/virologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/patologia , Viroses do Sistema Nervoso Central/etiologia , Viroses do Sistema Nervoso Central/patologia , Humanos , Síndrome de COVID-19 Pós-Aguda
11.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656586

RESUMO

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Biomarcadores , Estudos Transversais , Epilepsia/complicações , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações
12.
Metabolites ; 12(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35629950

RESUMO

A major challenge in the clinical management of patients with mesial temporal lobe epilepsy (MTLE) is identifying those who do not respond to antiseizure medication (ASM), allowing for the timely pursuit of alternative treatments such as epilepsy surgery. Here, we investigated changes in plasma metabolites as biomarkers of disease in patients with MTLE. Furthermore, we used the metabolomics data to gain insights into the mechanisms underlying MTLE and response to ASM. We performed an untargeted metabolomic method using magnetic resonance spectroscopy and multi- and univariate statistical analyses to compare data obtained from plasma samples of 28 patients with MTLE compared to 28 controls. The patients were further divided according to response to ASM for a supplementary and preliminary comparison: 20 patients were refractory to treatment, and eight were responsive to ASM. We only included patients using carbamazepine in combination with clobazam. We analyzed the group of patients and controls and found that the profiles of glucose (p = 0.01), saturated lipids (p = 0.0002), isoleucine (p = 0.0001), ß-hydroxybutyrate (p = 0.0003), and proline (p = 0.02) were different in patients compared to controls (p < 0.05). In addition, we found some suggestive metabolites (without enough predictability) by multivariate analysis (VIP scores > 2), such as lipoproteins, lactate, glucose, unsaturated lipids, isoleucine, and proline, that might be relevant to the process of pharmacoresistance in the comparison between patients with refractory and responsive MTLE. The identified metabolites for the comparison between MTLE patients and controls were linked to different biological pathways related to cell-energy metabolism and pathways related to inflammatory processes and the modulation of neurotransmitter release and activity in MTLE. In conclusion, in addition to insights into the mechanisms underlying MTLE, our results suggest that plasma metabolites may be used as disease biomarkers. These findings warrant further studies exploring the clinical use of metabolites to assist in decision-making when treating patients with MTLE.

13.
Front Neurol ; 13: 766009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356450

RESUMO

Background: Although several studies have emphasized the association between epilepsy and psychiatric disorders, fewer have investigated the impact of epilepsy on caregivers' emotional status, mainly in adult people with epilepsy (PWE). Here we investigated depressive symptoms, suicidal ideation, and anxiety symptoms in a large group of adult PWE and their caregivers. Methods: We analyzed symptoms of depression [with the Beck Depression Inventory-II (BDI-II)], suicidal ideation (with BDI-II item 9), and anxiety symptoms (with the Beck Anxiety Inventory) in a large group of adult PWE [N = 548 (60% women; median age 41)] and caregivers [N = 191 (72% women; median age 47)] from a Brazilian tertiary center, considering sociodemographic and clinical aspects. We also applied the Liverpool Adverse Events Profile to assess anti-seizure drugs adverse events. Results: While the presence (p = 0.026) (and intensity, p = 0.007) of depressive symptoms and suicidal ideation (p = 0.02) were higher in PWE compared to caregivers, the proportion of clinical anxiety symptoms (p = 0.32) (and the intensity, p = 0.13) was similar in both groups. Although the rates of suicidal ideation were higher in focal epilepsy (20%), both generalized genetic epilepsy and caregivers also presented elevated frequencies (11%) of suicidal ideation. The analyses of 120 patient-caregiver dyads revealed that the intensity of depressive symptoms in PWE (but not anxiety) correlated with the intensity of depressive (r = 0.35; p < 0.001) and anxiety (r = 0.25; p = 0.01) symptoms in their caregivers. In the multivariate analyses of PWE, focal epilepsy (compared to GGE) was associated with clinical depressive symptoms (odds ratio, OR 2.1) and suicidal ideation (OR 3.2), while recurrent seizures (compared to the seizure-free group) were associated with suicidal ideation (OR 2.6) and anxiety symptoms (OR 2.1). Also, caregivers with anxiety symptoms were 8 times more likely to exhibit depressive symptoms, and those with depressive symptoms were 8 times more likely to present anxiety symptoms. Conclusion: Our study suggests that specific attention for the caregivers' mental health is as essential as PWE. There is an urgent need for more studies involving caregivers to identify their emotional distress and provide adequate treatment.

14.
Brain ; 145(4): 1285-1298, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333312

RESUMO

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
15.
Ann Clin Transl Neurol ; 9(4): 454-467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238489

RESUMO

OBJECTIVES: We compared the proteomic signatures of the hippocampal lesion induced in three different animal models of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS): the systemic pilocarpine model (PILO), the intracerebroventricular kainic acid model (KA), and the perforant pathway stimulation model (PPS). METHODS: We used shotgun proteomics to analyze the proteomes and find enriched biological pathways of the dorsal and ventral dentate gyrus (DG) isolated from the hippocampi of the three animal models. We also compared the proteomes obtained in the animal models to that from the DG of patients with pharmacoresistant MTLE+HS. RESULTS: We found that each animal model presents specific profiles of proteomic changes. The PILO model showed responses predominantly related to neuronal excitatory imbalance. The KA model revealed alterations mainly in synaptic activity. The PPS model displayed abnormalities in metabolism and oxidative stress. We also identified common biological pathways enriched in all three models, such as inflammation and immune response, which were also observed in tissue from patients. However, none of the models could recapitulate the profile of molecular changes observed in tissue from patients. SIGNIFICANCE: Our results indicate that each model has its own set of biological responses leading to epilepsy. Thus, it seems that only using a combination of the three models may one replicate more closely the mechanisms underlying MTLE+HS as seen in patients.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Benchmarking , Modelos Animais de Doenças , Epilepsia/patologia , Epilepsia do Lobo Temporal/patologia , Humanos , Proteoma , Proteômica , Esclerose
16.
Brain ; 145(6): 1962-1977, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34957478

RESUMO

Focal cortical dysplasia is a highly epileptogenic cortical malformation with few treatment options. Here, we generated human cortical organoids from patients with focal cortical dysplasia type II. Using this human model, we mimicked some focal cortical dysplasia hallmarks, such as impaired cell proliferation, the presence of dysmorphic neurons and balloon cells, and neuronal network hyperexcitability. Furthermore, we observed alterations in the adherens junctions zonula occludens-1 and partitioning defective 3, reduced polarization of the actin cytoskeleton, and fewer synaptic puncta. Focal cortical dysplasia cortical organoids showed downregulation of the small GTPase RHOA, a finding that was confirmed in brain tissue resected from these patients. Functionally, both spontaneous and optogenetically-evoked electrical activity revealed hyperexcitability and enhanced network connectivity in focal cortical dysplasia organoids. Taken together, our findings suggest a ventricular zone instability in tissue cohesion of neuroepithelial cells, leading to a maturational arrest of progenitors or newborn neurons, which may predispose to cellular and functional immaturity and compromise the formation of neural networks in focal cortical dysplasia.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Malformações do Desenvolvimento Cortical , Encéfalo , Humanos , Recém-Nascido , Neurônios
17.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
18.
Brain Commun ; 3(3): fcab164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396113

RESUMO

Quantitative volumetric brain MRI measurement is important in research applications, but translating it into patient care is challenging. We explore the incorporation of clinical automated quantitative MRI measurements in statistical models predicting outcomes of surgery for temporal lobe epilepsy. Four hundred and thirty-five patients with drug-resistant epilepsy who underwent temporal lobe surgery at Cleveland Clinic, Mayo Clinic and University of Campinas were studied. We obtained volumetric measurements from the pre-operative T1-weighted MRI using NeuroQuant, a Food and Drug Administration approved software package. We created sets of statistical models to predict the probability of complete seizure-freedom or an Engel score of I at the last follow-up. The cohort was randomly split into training and testing sets, with a ratio of 7:3. Model discrimination was assessed using the concordance statistic (C-statistic). We compared four sets of models and selected the one with the highest concordance index. Volumetric differences in pre-surgical MRI located predominantly in the frontocentral and temporal regions were associated with poorer outcomes. The addition of volumetric measurements to the model with clinical variables alone increased the model's C-statistic from 0.58 to 0.70 (right-sided surgery) and from 0.61 to 0.66 (left-sided surgery) for complete seizure freedom and from 0.62 to 0.67 (right-sided surgery) and from 0.68 to 0.73 (left-sided surgery) for an Engel I outcome score. 57% of patients with extra-temporal abnormalities were seizure-free at last follow-up, compared to 68% of those with no such abnormalities (P-value = 0.02). Adding quantitative MRI data increases the performance of a model developed to predict post-operative seizure outcomes. The distribution of the regions of interest included in the final model supports the notion that focal epilepsies are network disorders and that subtle cortical volume loss outside the surgical site influences seizure outcome.

19.
Front Neurol ; 12: 690847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421794

RESUMO

We aimed to investigate the role of interleukin-1 beta (IL-1ß) in the mechanisms underlying mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). We assessed a cohort of 194 patients with MTLE+HS and 199 healthy controls. Patients were divided into those with positive and negative antecedent febrile seizures (FS). We used a multidimensional approach, including (i) genetic association with single nucleotide polymorphisms (SNPs) in the IL1B gene; (ii) quantification of the IL1B transcript in the hippocampal tissue of patients with refractory seizures; and (iii) quantification of the IL-1ß protein in the plasma. We found a genetic association signal for two SNPs, rs2708928 and rs3730364*C in the IL1B gene, regardless of the presence of FS (adjusted p = 9.62e-11 and 5.14e-07, respectively). We found no difference between IL1B transcript levels when comparing sclerotic hippocampal tissue from patients with MTLE+HS, without FS, and hippocampi from autopsy controls (p > 0.05). Nevertheless, we found increased IL-1ß in the plasma of patients with MTLE+HS with FS compared with controls (p = 0.0195). Our results support the hypothesis of a genetic association between MTLE+HS and the IL1B gene.

20.
Epilepsia ; 62(10): 2439-2450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338324

RESUMO

OBJECTIVE: This study aims to evaluate the role of scalp electroencephalography (EEG; ictal and interictal patterns) in predicting resective epilepsy surgery outcomes. We use the data to further develop a nomogram to predict seizure freedom. METHODS: We retrospectively reviewed the scalp EEG findings and clinical data of patients who underwent surgical resection at three epilepsy centers. Using both EEG and clinical variables categorized into 13 isolated candidate predictors and 6 interaction terms, we built a multivariable Cox proportional hazards model to predict seizure freedom 2 years after surgery. Harrell's step-down procedure was used to sequentially eliminate the least-informative variables from the model until the change in the concordance index (c-index) with variable removal was less than 0.01. We created a separate model using only clinical variables. Discrimination of the two models was compared to evaluate the role of scalp EEG in seizure-freedom prediction. RESULTS: Four hundred seventy patient records were analyzed. Following internal validation, the full Clinical + EEG model achieved an optimism-corrected c-index of 0.65, whereas the c-index of the model without EEG data was 0.59. The presence of focal to bilateral tonic-clonic seizures (FBTCS), high preoperative seizure frequency, absence of hippocampal sclerosis, and presence of nonlocalizable seizures predicted worse outcome. The presence of FBTCS had the largest impact for predicting outcome. The analysis of the models' interactions showed that in patients with unilateral interictal epileptiform discharges (IEDs), temporal lobe surgery cases had a better outcome. In cases with bilateral IEDs, abnormal magnetic resonance imaging (MRI) predicted worse outcomes, and in cases without IEDs, patients with extratemporal epilepsy and abnormal MRI had better outcomes. SIGNIFICANCE: This study highlights the value of scalp EEG, particularly the significance of IEDs, in predicting surgical outcome. The nomogram delivers an individualized prediction of postoperative outcome, and provides a unique assessment of the relationship between the outcome and preoperative findings.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Couro Cabeludo/cirurgia , Convulsões , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA