Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 71: 116952, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930852

RESUMO

The search for new drug candidates against Alzheimer's disease (AD) remains a complex challenge for medicinal chemists due to its multifactorial pathogenesis and incompletely understood physiopathology. In this context, we have explored the molecular hybridization of pharmacophore structural fragments from known bioactive molecules, aiming to obtain a novel molecular architecture in new chemical entities capable of concomitantly interacting with multiple targets in a so-called multi-target directed ligands (MTDLs) approach. This work describes the synthesis of 4-hydroxymethyl)piperidine-N-benzyl-acyl-hydrazone derivatives 5a-l, designed as novel MTDLs, showing improved multifunctional properties compared to the previously reported parent series of N-benzyl-(3-hydroxy)piperidine-acyl-hydrazone derivatives 4. The new improved derivatives were studied in silico, regarding their mode of interaction with AChE enzyme, and in vitro, for evaluation of their effects on the selective inhibition of cholinesterases, cellular antioxidant, and neuroprotective activities as their cytotoxicity in human neuroblastoma (SH-SY5Y) cells. Overall, compound PQM-181 (5 k) showed the best balanced selective and non-competitive inhibition of AChE (IC50 = 5.9 µM, SI > 5.1), with an additional antioxidant activity (IC50 = 7.45 µM) against neuronal t-BOOH-induced oxidative stress and neuroprotective ability against neurotoxicity elicited by both t-BOOH and OAß1-42, and a moderate ability to interfere in Aß1-42 aggregates, with low cytotoxicity and good predictive druggability properties, suggesting a multifunctional pharmacological profile suitable for further drug development against AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Antioxidantes/farmacologia , Inibidores da Colinesterase/química , Desenho de Fármacos , Humanos , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Ligantes , Estrutura Molecular , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/química , Piperidinas/química , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 26(20): 5566-5577, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30340901

RESUMO

A series of hybrids containing tacrine linked to carbohydrate-based moieties, such as d-xylose, d-ribose, and d-galactose derivatives, were synthesized by the nucleophilic substitution between 9-aminoalkylamino-1,2,3,4-tetrahydroacridines and the corresponding sugar-based tosylates. All compounds were found to be potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the nanomolar IC50 scale. Most of the d-xylose derivatives (6a-e) were selective for AChE and the compound 6e (IC50 = 2.2 nM for AChE and 4.93 nM for BuChE) was the most active compound for both enzymes. The d-galactose derivative 8a was the most selective for AChE exhibiting an IC50 ratio of 7.6 for AChE over BuChE. Only two compounds showed a preference for BuChE, namely 7a (d-ribose derivative) and 6b (d-xylose derivative). Molecular docking studies indicated that the inhibitors are capable of interacting with the entire binding cavity and the main contribution of the linker is to enable the most favorable positioning of the two moieties with CAS, PAS, and hydrophobic pocket to provide optimal interactions with the binding cavity. This finding is reinforced by the fact that there is no linear correlation between the linker size and the observed binding affinities. The majority of the new hybrids synthesized in this work do not violate the Lipinski's rule-of-five according to FAF-Drugs4, and do not demonstrated predicted hepatotoxicity according ProTox-II.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Tacrina/análogos & derivados , Tacrina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Galactose/análogos & derivados , Galactose/síntese química , Galactose/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ribose/análogos & derivados , Ribose/síntese química , Ribose/farmacologia , Relação Estrutura-Atividade , Tacrina/síntese química , Torpedo , Xilose/análogos & derivados , Xilose/síntese química , Xilose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...