Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9978, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693252

RESUMO

An extremely important oil crop in the world, Helianthus annuus L. is one of the world's most significant members of the Asteraceae family. The rate and extent of seed germination and agronomic features are consistently affecting  by temperature (T) and changes in water potential (ψ). A broad hydrothermal time model with T and ψ components could explain sunflower responses over suboptimal T and ψ. A lab experiment was performed using the HTT model to discover both T and ψ and their interactive effects on sunflower germination and also to figure  out the cardinal Ts values. The sunflower seeds were germinated at temperatures (15 °C, 20 °C, 25 °C and 30 °C); each Ts had five constant ψs of 0, 0.3, 0.6, 0.9, and 1.2 MPa via PEG 6000 as osmotic stress inducer. The results revealed that highest germination index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 30 °C with osmotic stress of (- 1.2 MPa). The highest value of germination rate index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 15 °C with an osmotic stress of (- 1.2 MPa). In conclusion, water potential, temperature, and their interactions have a considerable impact on seed germination rate, and other metrics (GI, SVI-I, GRI, GE, SVI-II, and MGT). Seeds sown  at 20 °C with zero water potential showed high germination metrics such as GE, GP, GRI, and T50%. The maximum value to TTsub noted at 30 °C in - 0.9 MPa osmotic stress and the minimum value was calculated at 15 °C in - 1.2 MPa osmotic stress. The result of TTsupra recorded highest at 15 °C in  controlled group (0 MPa). Moreover, θH was  highest at 30 °C in controlled condition (0 MPa) and minimum value was observed at  20 °C under - 1.2 MPa osmotic stress. The value of θHTT were  maximum at  30 °C in controlled group (0 MPa) and minimum value was  recorded at 15 °C under - 1.2 MPa osmotic potential. The base, optimum and ceiling temperatures for sunflower germination metrics in this experiment were noted  6.8, 20 and 30 °C respectively.


Assuntos
Germinação , Helianthus , Pressão Osmótica , Sementes , Temperatura , Helianthus/crescimento & desenvolvimento , Helianthus/fisiologia , Sementes/crescimento & desenvolvimento , Água , Modelos Teóricos
2.
Sci Rep ; 14(1): 6042, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472226

RESUMO

Geospatial methods, such as GIS and remote sensing, map radon levels, pinpoint high-risk areas and connect geological traits to radon presence. These findings direct health planning, focusing tests, mitigation, and policies where radon levels are high. Overall, geospatial analyses offer vital insights, shaping interventions and policies to reduce health risks from radon exposure. There is a formidable threat to human well-being posed by the naturally occurring carcinogenic radon (222Rn) gas due to high solubility in water. Under the current scenario, it is crucial to assess the extent of 222Rn pollution in our drinking water sources across various regions and thoroughly investigate the potential health hazards it poses. In this regard, the present study was conducted to investigate the concentration of 222Rn in groundwater samples collected from handpumps and wells and to estimate health risks associated with the consumption of 222Rn-contaminated water. For this purpose, groundwater samples (n = 30) were collected from handpumps, and wells located in the Mulazai area, District Peshawar. The RAD7 radon detector was used as per international standards to assess the concentration of 222Rn in the collected water samples. The results unveiled that the levels of 222Rn in the collected samples exceeded the acceptable thresholds set by the US Environmental Protection Agency (US-EPA) of 11.1 Bq L-1. Nevertheless, it was determined that the average annual dose was below the recommended limit of 0.1 mSv per year, as advised by both the European Union Council and the World Health Organization. In order to avoid the harmful effects of such excessive 222Rn concentrations on human health, proper ventilation and storage of water in storage reservoirs for a long time before use is recommended to lower the 222Rn concentration.


Assuntos
Água Potável , Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Humanos , Água Potável/análise , Monitoramento de Radiação/métodos , Radônio/análise , Paquistão , Poluentes Radioativos da Água/análise , Água Subterrânea/análise , Poluição da Água/análise
3.
Sci Rep ; 14(1): 7553, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555358

RESUMO

The objective of the study was to evaluate the performance of Pistia stratiotes for treatment of domestic wastewater in a free surface water flow constructed wetland. The objective of the study was to evaluate contaminants removal efficiency of the constructed wetland vegetated with P. stratiotes in treatment of domestic wastewater against Hydraulic retention time (HRT) of 10, 20 and 30 days was investigated. This asks for newer and efficient low-cost nature-based water treatment system which along with cost takes into consideration the sustainability of the ecosystem. Five constructed wetland setups improved the wastewater quality and purify it significantly by reducing the TDS by 83%, TSS by 82%, BOD by 82%, COD by 81%, Chloride by 80%, Sulfate by 77%, NH3 by 84% and Total Oil and Grease by 74%. There was an increase in pH of about 11.9%. Color and odor of wastewater was also improved significantly and effectively. It was observed that 30 days' HRT was optimum for the treatment of domestic wastewater. The final effluent was found to be suitable as per national environmental quality standards and recycled for watering plants and crop irrigation but not for drinking purposes. The treatment in constructed wetland system was found to be economical, as the cost of construction only was involved and operational and maintenance cost very minimal. Even this research was conducted on the sole purpose of commuting the efficiency of pollutant removal in short span time.


Assuntos
Araceae , Purificação da Água , Águas Residuárias , Áreas Alagadas , Ecossistema , Eliminação de Resíduos Líquidos
4.
Int J Phytoremediation ; : 1-12, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488053

RESUMO

Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.


Combined effect of PGPR and nanotechnology in the bioremediation of toxic contaminants is well reported in literature. Most of these reports comprise the use of hyperaccumulator plants for phytoextraction of heavy metals. However, phytostabilization potential of hyperaccumulators is still un-explored. Current study investigated the role of PGPR and Fe-NPs in suppressing the uptake of Cr in aloe vera, a hyperaccumulator plant.

5.
Sci Rep ; 14(1): 154, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167892

RESUMO

Meteorological factors play a crucial role in affecting air quality in the urban environment. Peshawar is the capital city of the Khyber Pakhtunkhwa province in Pakistan and is a pollution hotspot. Sources of PM10 and the influence of meteorological factors on PM10 in this megacity have yet to be studied. The current study aims to investigate PM10 mass concentration levels and composition, identify PM10 sources, and quantify links between PM10 and various meteorological parameters like temperature, relative humidity (RH), wind speed (WS), and rainfall (RF) during the winter months from December 2017 to February 2018. PM10 mass concentrations vary from 180 - 1071 µg m-3, with a mean value of 586 ± 217 µg m-3. The highest concentration is observed in December, followed by January and February. The average values of the mass concentration of carbonaceous species (i.e., total carbon, organic carbon, and elemental carbon) are 102.41, 91.56, and 6.72 µgm-3, respectively. Water-soluble ions adhere to the following concentration order: Ca2+ > Na+ > K+ > NH4+ > Mg2+. Twenty-four elements (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Co, Zn, Ga, Ge, As, Se, Kr, Ag, Pb, Cu, and Cd) are detected in the current study by PIXE analysis. Five sources based on Positive Matrix Factorization (PMF) modeling include industrial emissions, soil and re-suspended dust, household combustion, metallurgic industries, and vehicular emission. A positive relationship of PM10 with temperature and relative humidity is observed (r = 0.46 and r = 0.56, respectively). A negative correlation of PM10 is recorded with WS (r = - 0.27) and RF (r = - 0.46). This study's results motivate routine air quality monitoring owing to the high levels of pollution in this region. For this purpose, the establishment of air monitoring stations is highly suggested for both PM and meteorology. Air quality standards and legislation need to be revised and implemented. Moreover, the development of effective control strategies for air pollution is highly suggested.

6.
Sci Rep ; 14(1): 2614, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297010

RESUMO

Maize (Zea mays) is an influential crop in its production across the world. However, the invasion of many phytopathogens greatly affects the maize crop yield at various hotspot areas. Of many diseases, bacterial stalk rot of maize caused by Dickeya zeae results in severe yield reduction, thus the need for efficient management is important. Further, to produce epidemiological information for control of disease outbreaks in the hot spot regions of Sialkot District, Punjab Pakistan, extensive field surveys during 2021 showed that out of 266 visited areas, the highest disease incidence ranging from 66.5 to 78.5% while the lowest incidence was ranging from 9 to 20%. The Maxent modeling revealed that among 19 environmental variables, four variables including temperature seasonality (bio-4), mean temperature of the wettest quarter (bio-8), annual precipitation (bio-12), and precipitation of driest month (bio-14) were significantly contributing to disease distribution in current and coming years. The study outcomes revealed that disease spread will likely increase across four tehsils of Sialkot over the years 2050 and 2070. Our findings will be helpful to policymakers and researchers in devising effective disease management strategies against bacterial stalk rot of maize outbreaks in Sialkot, Pakistan.


Assuntos
Mudança Climática , Dickeya , Zea mays , Zea mays/microbiologia , Paquistão , Doenças das Plantas/microbiologia , Enterobacteriaceae
7.
Sci Rep ; 13(1): 21504, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057336

RESUMO

Okra (Abelmoschus esculentus L.) is the most consumed vegetable worldwide with the potential for diverse ecological adaptation. However, increasing salinization and changing climatic conditions are posing serious threats to the growth, yield, and quality of okra. Therefore, to mitigate increasing soil salinization and ensure sustainable okra production under rapidly changing climatic conditions, evaluation of new okra germplasm to develop salt tolerant cultivars is direly needed. The present study was designed to evaluate the genetic resources of okra genotypes for salt tolerance at growth and reproductive phases. Based on mophological and physio-biochemical responses of plants under stress condition, genotypes were divided into salt tolerant and succeptible groups. The experiment was comprised of 100 okra genotypes and each genotype was grown under control conditions and 6.5 dS m-1 NaCl concentration in a pot having 10 kg capacity. The experiment was conducted in a completely randomized design and each treatment was replicated three times. The results showed vast genetic variability among the evaluated okra germplasm traits like days to emergence, pod length, pod diameter, plant height, stem girth, and other yield-related parameters. Correlation analysis showed a highly significant positive association among the number of leaves at first flower and plant height at first flower.Likewise, pod weight also revealed a highly significant positive relationship for pod weight plant-1, pod length, and K+: Na+. Principal Component Analysis (PCA) revealed that out of 16 principal components (PCs), five components showed more than one eigenvalue and the first six PCs contributed 67.2% of the variation. Bi-plot analysis illustrated that genotypes 95, 111, 133, 99, and 128, under salt stress conditions, exhibited both high yield per plant and salt-tolerant behavior in other yield-related traits. On the basis of all studied traits, a salt susceptible group and a salt-tolerant group were formed. The salt tolerant group comprised of 97, 68, 95, 114, 64, 99, 111, 133, 128, and 109 genotypes, whereas, the salt susceptible group contained 137, 139, 130, 94, and 125 genotypes. Salt-tolerant okra genotypes were suggested to be used in further breeding programs aimed to develop salt tolerance in okra. These insights will empower precision breeding, underscore the importance of genetic diversity, and bear the potential to address the challenges of salt-affected soils while promoting broader agricultural resilience, economic prosperity, and food security.


Assuntos
Abelmoschus , Abelmoschus/genética , Melhoramento Vegetal , Estresse Salino , Solo , Agricultura
8.
Sci Rep ; 13(1): 19024, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923861

RESUMO

Soil salinization is a prevalent form of land degradation particularly in water-deficient regions threatening agricultural sustainability. Present desalinization methods demand excessive water use. Biochar has been recognized as a potential remedy for saline soils and Gibberellic acids (GA3) are known to mediate various biochemical processes aiding in stress mitigation. This study was undertaken at The Islamia University of Bahawalpur during winter 2022-23 to explore the combined effect of biochar and GA3 on wheat (Triticum aestivum L.) in saline conditions. Employing a fully randomized design wheat seeds in 24 pots were subjected to two salinity levels with three replications across eight treatments: T1 to T8 ranging from controls with different soil electrical conductivities (ECs) to treatments involving combinations of GA3, biochar and varying soil ECs. These treatments included T1 (control with soil EC of 2.43dS/m), T2 (salinity stress with soil EC of 5.11dS/m), T3 (10 ppm GA3 with soil EC of 2.43dS/m), T4 (10 ppm GA3 with soil EC of 5.11dS/m), T5 (0.75% Biochar with soil EC of 2.43dS/m), T6 (0.75% Biochar with soil EC of 5.11dS/m), T7 (10 ppm GA3 combined with 0.75% biochar at soil EC of 2.43dS/m) and T8 (10 ppm GA3 plus 0.75% biochar at soil EC of 5.11dS/m). The results indicated that the combined applications of GA3 and biochar significantly enhanced plant growth in saline conditions viz. germination rate by 73%, shoot length of 15.54 cm, root length of 4.96 cm, plant height of 16.89 cm, shoot fresh weight 43.18 g, shoot dry weight 11.57 g, root fresh weight 24.26 g, root dry weight 9.31 g, plant water content 60.77%, photosynthetic rate 18.58(CO2 m-2 s-1) carotenoid 3.03 g, chlorophyll a 1.01 g, chlorophyll b 0.69 g, total chlorophyll contents by 1.9 g as compared to the control. The findings suggest that the combined application of these agents offers a sustainable and effective strategy for cultivating wheat in saline soils. The synergy between biochar and GA3 presents a promising avenue for sustainable wheat cultivation in saline conditions. This combined approach not only improves plant growth but also offers an innovative, water-efficient solution for enhancing agricultural productivity in saline-affected regions.


Assuntos
Triticum , Verduras , Clorofila A , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Solo/química , Água , Solução Salina , Estresse Salino
9.
Microorganisms ; 11(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894261

RESUMO

Fusarium wilt diseases severely influence the growth and productivity of numerous crop plants. The consortium of antagonistic rhizospheric Bacillus strains and quercetin were evaluated imperatively as a possible remedy to effectively manage the Fusarium wilt disease of tomato plants. The selection of Bacillus strains was made based on in-vitro antagonistic bioassays against Fusarium oxysporum f.sp. lycoprsici (FOL). Quercetin was selected after screening a library of phytochemicals during in-silico molecular docking analysis using tomato LysM receptor kinases "SILKY12" based on its dual role in symbiosis and plant defense responses. After the selection of test materials, pot trials were conducted where tomato plants were provided consortium of Bacillus strains as soil drenching and quercetin as a foliar spray in different concentrations. The combined application of consortium (Bacillus velezensis strain BS6, Bacillus thuringiensis strain BS7, Bacillus fortis strain BS9) and quercetin (1.0 mM) reduced the Fusarium wilt disease index up to 69%, also resulting in increased plant growth attributes. Likewise, the imperative application of the Bacillus consortium and quercetin (1.0 mM) significantly increased total phenolic contents and activities of the enzymes of the phenylpropanoid pathway. Non-targeted metabolomics analysis was performed to investigate the perturbation in metabolites. FOL pathogen negatively affected a range of metabolites including carbohydrates, amino acids, phenylpropanoids, and organic acids. Thereinto, combined treatment of Bacillus consortium and quercetin (1.0 mM) ameliorated the production of different metabolites in tomato plants. These findings prove the imperative use of Bacillus consortium and quercetin as an effective and sustainable remedy to manage Fusarium wilt disease of tomato plants and to promote the growth of tomato plants under pathogen stress conditions.

10.
Sci Rep ; 13(1): 16270, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758773

RESUMO

Human pathogenic fungi and bacteria pose a huge threat to human life, accounting for high rates of mortality every year. Unfortunately, the past few years have seen an upsurge in multidrug resistance pathogens. Consequently, finding an effective alternative antimicrobial agent is of utmost importance. Hence, this study aimed to phytofabricate silver nanoparticles (AgNPs) using aqueous extracts of the solid endosperm of Cocos nucifera L, also known as coconut meat (Cm). Green synthesis is a facile, cost-effective and eco-friendly methods which has several benefits over other physical and chemical methods. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The Cm-AgNPs showed a UV-Vis peak at 435 nm and were crystalline and quasi-spherical, with an average size of 15 nm. The FTIR spectrum displayed functional groups of phenols, alkaloids, sugars, amines, and carbonyl compounds, which are vital in the reduction and capping of NPs. The antibacterial and anticandidal efficacy of the Cm-AgNPs was assessed by the agar-well diffusion method and expressed as a zone of inhibition (ZOI). Amongst all the test isolates, Staphylococcus epidermidis, Candida auris, and methicillin-resistant Staphylococcus epidermidis were more susceptible to the NPs with a ZOI of 26.33 ± 0.57 mm, 19.33 ± 0.57 mm, and 18 ± 0.76 mm. The MIC and MFC values for Candida spp. were higher than the bacterial test isolates. Scanning electron microscopic studies of all the test isolates at their MIC concentrations showed drastically altered cell morphology, indicating that the NPs could successfully cross the cell barrier and damage the cell integrity, causing cell death. This study reports the efficacy of Cm-AgNPs against several Candida and bacterial strains, which had not been reported in earlier studies. Furthermore, the synthesized AgNPs exhibited significant antioxidant activity. Thus, the findings of this study strongly imply that the Cm-AgNPs can serve as promising candidates for therapeutic applications, especially against multidrug-resistant isolates of Candida and bacteria. However, further investigation is needed to understand the mode of action and biosafety.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Humanos , Cocos , Antioxidantes/farmacologia , Prata/farmacologia , Anti-Infecciosos/farmacologia , Candida , Carne
11.
Sci Rep ; 13(1): 15015, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696905

RESUMO

Drought stress as a result of rapidly changing climatic conditions has a direct negative impact on crop production especially wheat which is the 2nd staple food crop. To fulfill the nutritional demand under rapidly declining water resources, there is a dire need to adopt a precise, and efficient approach in the form of different amendments. In this regard, the present study investigated the impact of nano-biochar (NBC) and brassinosteroids (BR) in enhancing the growth and productivity of wheat under different drought stress conditions. The field study comprised different combinations of amendments (control, NBC, BR, and NBC + BR) under three irrigation levels (D0, D1 and D2). Among different treatments, the synergistic approach (NBC + BR) resulted in the maximum increase in different growth and yield parameters under normal as well as drought stress conditions. With synergistic approach (NBC + BR), the maximum plant height (71.7 cm), spike length (17.1), number of fertile tillers m-2 (410), no. of spikelets spike-1 (19.1), no. of grains spike-1 (37.9), 1000 grain weight (37 g), grain yield (4079 kg ha-1), biological yield (10,502 kg ha-1), harvest index (43.5). In the case of physiological parameters such as leaf area index, relative water contents, chlorophyll contents, and stomatal conductance were maximally improved with the combined application of NBC and BR. The same treatment caused an increase of 54, 10, and 7% in N, P, and K contents in grains, respectively compared to the control treatment. Similarly, the antioxidant response was enhanced in wheat plants under drought stress with the combined application of NBC and BR. In conclusion, the combined application of NBC and BR caused a significant increase in the growth, physiological and yield attributes of wheat under drought stress.


Assuntos
Brassinosteroides , Triticum , Secas , Antioxidantes , Grão Comestível
12.
Sci Rep ; 13(1): 12956, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563236

RESUMO

Upper Egypt experiences high temperatures during summer and low temperatures during winter, which significantly impacts the sowing dates of maize in this region. The productivity of maize crops and water use efficiency can be greatly affected by water stress and sowing dates (SDs). Therefore, it is crucial to determine the optimal irrigation level and SDs based on local conditions. To assess the effects, two irrigation levels were employed: (1) control (full irrigation water applied) and (2) 70% of irrigation water. Field experiments were conducted at the National Water Research Center's water studies and research complex station in Toshka. The aim was to evaluate two irrigation levels (full and limited irrigation) across five SDs (early: mid-February and March, normal: mid-June, and late: mid-August and September) in both 2019 and 2020, in order to identify the ideal sowing date (SD) and irrigation level. The normal SD resulted in an increased the growth season length between plant emergence and maturity. Conversely, the late SD reduced the number of days until plant maturity, resulting in higher grain yields and water use efficiency (WUE). Notably, the SD in September, coupled with the 70% irrigation level, yielded the highest productivity and WUE, with a productivity of 7014 kg ha-1 and a WUE of 0. 9 kg m-3. Based on the findings, it is recommended that regions with similar conditions consider cultivating maize seeds in September, adopting a 70% irrigation level, to achieve optimal N uptake, growth traits (plant height, ear length, ear weight, number of rows per ear, and grain index weight), yield, and WUE.


Assuntos
Agricultura , Conservação dos Recursos Hídricos , Zea mays , Zea mays/crescimento & desenvolvimento , Irrigação Agrícola , Egito , Mudança Climática , Meio Ambiente , Estações do Ano , Tempo (Meteorologia)
13.
Environ Pollut ; 335: 122321, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544403

RESUMO

Cadmium (Cd) is known to have detrimental effects on plant growth and human health. Recent studies showed that silicon nanoparticles (SNPs) can decrease Cd toxicity in plants. Therefore, a study was conducted using 50 µM Cd and 1.50 mM SNPs to investigate Cd uptake, subcellular distribution, proline (Pro) metabolism, and the antioxidant defense system in rapeseed seedlings. In this study, results indicated that Cd stress negatively affected rapeseed growth, and high Cd contents accumulated in both shoots and roots. However, SNPs significantly decreased Cd contents in shoots and roots. Moreover, substantial increases were found in root fresh weight by 40.6% and dry weight by 46.6%, as well as shoot fresh weight by 60.1% and dry weight by 113.7% with the addition of SNPs. Furthermore, the addition of SNPs alleviated oxidative injury by maintaining the ascorbate-glutathione (AsA-GSH) cycle and increased Pro biosynthesis which could be due to high activities of Δ1-pyrroline-5-carboxylate synthase (P5CS) and reductase (P5CR) and decreased proline dehydrogenase (ProDH) activity. Furthermore, the addition of SNPs accumulated Cd in the soluble fraction (42%) and cell wall (45%). Results indicate that SNPs effectively reduce Cd toxicity in rapeseed seedlings which may be effective in promoting both rapeseed productivity and human health preservation.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Silício/farmacologia , Silício/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Brassica rapa/metabolismo , Plântula/metabolismo , Prolina/metabolismo , Raízes de Plantas/metabolismo , Glutationa/metabolismo
14.
ACS Omega ; 8(25): 22788-22808, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396236

RESUMO

Drought and osmotic stresses are major threats to agricultural crops as they affect plants during their life cycle. The seeds are more susceptible to these stresses during germination and establishment of seedlings. To cope with these abiotic stresses, various seed priming techniques have broadly been used. The present study aimed to assess seed priming techniques under osmotic stress. Osmo-priming with chitosan (1 and 2%), hydro-priming with distilled water, and thermo-priming at 4 °C were used on the physiology and agronomy of Zea mays L. under polyethylene glycol (PEG-4000)-induced osmotic stress (-0.2 and -0.4 MPa). The vegetative response, osmolyte content, and antioxidant enzymes of two varieties (Pearl and Sargodha 2002 White) were studied under induced osmotic stress. The results showed that seed germination and seedling growth were inhibited under osmotic stress and germination percentage, and the seed vigor index was enhanced in both varieties of Z. mays L. with chitosan osmo-priming. Osmo-priming with chitosan and hydro-priming with distilled water modulated the level of photosynthetic pigments and proline, which were reduced under induced osmotic stress; moreover, the activities of antioxidant enzymes were improved significantly. In conclusion, osmotic stress adversely affects the growth and physiological attributes; on the contrary, seed priming ameliorated the stress tolerance resistance of Z. mays L. cultivars to PEG-induced osmotic stress by activating the natural antioxidation enzymatic system and accumulating osmolytes.

15.
ACS Omega ; 8(25): 22575-22588, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396242

RESUMO

Soil salinization has become a major issue around the world in recent years, as it is one of the consequences of climate change as sea levels rise. It is crucial to lessen the severe consequences of soil salinization on plants. A pot experiment was conducted to regulate the physiological and biochemical mechanisms in order to evaluate the ameliorative effects of potassium nitrate (KNO3) on Raphanus sativus L. genotypes under salt stress. The results from the present study illustrated that the salinity stress induced a significant decrease in shoot length, root length, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, number of leaves per plant, leaf area chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, net photosynthesis, stomatal conductance, and transpiration rate by 43, 67, 41, 21, 34, 28, 74, 91, 50, 41, 24, 34, 14, 26, and 67%, respectively, in a 40 day radish while decreased by 34, 61, 49, 19, 31, 27, 70, 81, 41, 16, 31, 11, 21, and 62%, respectively, in Mino radish. Furthermore, MDA, H2O2 initiation, and EL (%) of two varieties (40 day radish and Mino radish) of R. sativus increased significantly (P < 0.05) by 86, 26, and 72%, respectively, in the roots and also increased by 76, 106, and 38% in the leaves in a 40 day radish, compared to the untreated plants. The results also elucidated that the contents of phenolic, flavonoids, ascorbic acid, and anthocyanin in the two varieties (40 day radish and Mino radish) of R. sativus increased with the exogenous application of KNO3 by 41, 43, 24, and 37%, respectively, in the 40 day radish grown under the controlled treatments. Results indicated that implementing KNO3 exogenously in the soil increased the activities of antioxidants like SOD, CAT, POD, and APX by 64, 24, 36, and 84% in the roots and also increased by 21, 12, 23, and 60% in the leaves of 40 day radish while also increased by 42, 13, 18, and 60% in the roots and also increased by 13, 14, 16, and 41% in the leaves in Mino radish, respectively, in comparison to those plants grown without KNO3. We found that KNO3 substantially improved plant growth by lowering the levels of oxidative stress biomarkers, thereby further stimulating the antioxidant potential system, which led to an improved nutritional profile of both R. sativus L. genotypes under normal and stressed conditions. The current study would offer a deep theoretical foundation for clarifying the physiological and biochemical mechanisms by which the KNO3 improves salt tolerance in R. sativus L. genotypes.

16.
ACS Omega ; 8(29): 25766-25779, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521629

RESUMO

Industries play a significant role in the improvement of lifestyle and in the development of a country. However, the byproducts from these industries are a source of environmental pollution. The proper use of the byproducts of these industries can help to cope with environmental pollution. Some byproducts have high nutritional content and are good for crop plants. The purpose of this research was to investigate the effect of different rates of poultry manure on the soil chemical properties, growth, and yield of maize. A pot experiment was conducted in the botanical garden of the Department of Botany, University of Sargodha, Pakistan to investigate the effect of various treatments of poultry manure (0, 25, 50, 75, and 100 g/pot) on the morphological, physiological, and yield attributes of two maize varieties, Pearl and MMRI. Treatment T1 was a mixture of soil and 75 g/pot poultry manure, T2 was a mixture of soil and 50 g/pot poultry manure, T3 was a mixture of soil and 25 g/pot poultry manure, and T4 was 100 g/pot poultry manure. Soil without any industrial byproduct (100% soil only) was used as the control (T0). The results revealed that the use of poultry manure enhanced the physical properties of the soil. Available P and soil organic matter were improved in soil amended with poultry manure. It is evident from the results that the vegetative growth of both maize varieties was significantly enhanced by growing in soil amended with poultry manure as compared to their respective control. Similar responses were also recorded for the physiological attributes of leaf area, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency of both varieties. Yield and yield-contributing traits of both maize varieties were significantly improved by growing plants in soil amended with 50 and 75 g/pot of poultry manure. It is also inferred that the use of 50 g/pot poultry manure in soil amendment is an eco-friendly and economically effective option for maize growers of arid and semiarid regions to enhance the kernel yield and profit per annum. Poultry manure could be useful to ameliorate the adverse effects of salinity stress on all parameters, particularly the grain yield. Furthermore, this would be a useful and economical method for the safe disposal of byproducts.

17.
ACS Omega ; 8(29): 25988-25998, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521679

RESUMO

Wheat (Triticum aestivum L.) is a prominent grain crop. The goal of the current experiment was to examine the genetic potential of advanced bread wheat genotypes for yield and stripe rust resistance. Ninety-three bread wheat genotypes including three varieties (Kohat-2017, Pakistan-2013, and Morocco) were field tested in augmented design as observational nurseries at three locations (i.e., Kohat, Nowshera, and Peshawar) during the 2018-19 crop season. Various parameters related to yield and stripe rust resistance showed significant differences among genotypes for most of the characters with few exceptions. The analysis of variance revealed significant variations for all the genotypes for all the traits at all three sites with few exceptions where nonsignificant differences were noticed among genotypes. Averaged over three locations, genotypes exhibiting maximum desirable values for yield and yield components were KT-86 (325 tillers) for tillers m-2, KT-50 (2.86 g) for grain weight spike-1, KT-49 (41.6 g) for 1000-grain weight, KT-50 (74 grains) for grains spikes-1, KT-55 (4.76 g) for spike weight, and KT-36 and KT-072 (4586 kg ha-1) for grain yield. Correlation analysis revealed that grain yield had a significant positive correlation with grain spike-1 and grain weight spike-1 at Kohat, with grains spike-1, tillers m-2, and grain weight spike-1 at Nowshera, and with plant height, spike weight, 1000-grain weight, and tillers m-2 at Peshawar. Molecular marker data and host response in the field at the adult stage revealed that Yr15 and Yr10 are both still effective in providing adequate resistance to wheat against prevalent races of stripe rust. Four lines showing desirable lower average coefficient of infection (ACI) values without carrying Yr15 and Yr10 genes show the presence of unique/new resistance gene(s) in the genetic composition of these four lines. Genotype KT-072 (4586 kg ha-1 and 1.3 ACI), KT-07 (4416 kg ha-1 and 4.3 ACI), KT-10 (4346 kg ha-1 and 1.0 ACI), and KT-62 (4338 kg ha-1 and 2.7 ACI) showed maximum values for grain yield and low desirable ACI values, and these lines could be recommended for general cultivation after procedural requirements of variety release.

18.
ACS Omega ; 8(23): 20471-20487, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332827

RESUMO

Sustainable agriculture is threatened by salinity stress because of the low yield quality and low crop production. Rhizobacteria that promote plant growth modify physiological and molecular pathways to support plant development and reduce abiotic stresses. The recent study aimed to assess the tolerance capacity and impacts of Bacillus sp. PM31 on the growth, physiological, and molecular responses of maize to salinity stress. In comparison to uninoculated plants, the inoculation of Bacillus sp. PM31 improved the agro-morphological traits [shoot length (6%), root length (22%), plant height (16%), fresh weight (39%), dry weight (29%), leaf area (11%)], chlorophyll [Chl a (17%), Chl b (37%), total chl (22%)], carotenoids (15%), proteins (40%), sugars (43%), relative water (11%), flavonoids (22%), phenols (23%), radical scavenging capacity (13%), and antioxidants. The Bacillus sp. PM31-inoculated plants showed a reduction in the oxidative stress indicators [electrolyte leakage (12%), H2O2 (9%), and MDA (32%)] as compared to uninoculated plants under salinity and increased the level of osmolytes [free amino acids (36%), glycine betaine (17%), proline (11%)]. The enhancement of plant growth under salinity was further validated by the molecular profiling of Bacillus sp. PM31. Moreover, these physiological and molecular mechanisms were accompanied by the upregulation of stress-related genes (APX and SOD). Our study found that Bacillus sp. PM31 has a crucial and substantial role in reducing salinity stress through physiological and molecular processes, which may be used as an alternative approach to boost crop production and yield.

19.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903898

RESUMO

Red dragon fruit (Hylocereus polyrhizus) is an economic and promising fruit crop in arid and semi-arid regions with water shortage. An automated liquid culture system using bioreactors is a potential tool for micropropagation and large-scale production. In this study, axillary cladode multiplication of H. polyrhizus was assessed using cladode tips and cladode segments in gelled culture versus continuous immersion air-lift bioreactors (with or without a net). Axillary multiplication using cladode segments (6.4 cladodes per explant) was more effective than cladode tip explants (4.5 cladodes per explant) in gelled culture. Compared with gelled culture, continuous immersion bioreactors provided high axillary cladode multiplication (45.9 cladodes per explant) with a higher biomass and length of axillary cladodes. Inoculation of H. polyrhizus micropropagated plantlets with arbuscular mycorrhizal fungi (Gigaspora margarita and Gigaspora albida) significantly increased the vegetative growth during acclimatization. These findings will improve the large-scale propagation of dragon fruit.

20.
Genes (Basel) ; 13(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893042

RESUMO

Protein kinases play an essential role in plants' responses to environmental stress signals. SnRK2 (sucrose non-fermenting 1-related protein kinase 2) is a plant-specific protein kinase that plays a crucial role in abscisic acid and abiotic stress responses in some model plant species. In apple, corn, rice, pepper, grapevine, Arabidopsis thaliana, potato, and tomato, a genome-wide study of the SnRK2 protein family was performed earlier. The genome-wide comprehensive investigation was first revealed to categorize the SnRK2 genes in the Liriodendron chinense (L. chinense). The five SnRK2 genes found in the L. chinense genome were highlighted in this study. The structural gene variants, 3D structure, chromosomal distributions, motif analysis, phylogeny, subcellular localization, cis-regulatory elements, expression profiles in dormant buds, and photoperiod and chilling responses were all investigated in this research. The five SnRK2 genes from L. chinense were grouped into groups (I-IV) based on phylogeny analysis, with three being closely related to other species. Five hormones-, six stress-, two growths and biological process-, and two metabolic-related responsive elements were discovered by studying the cis-elements in the promoters. According to the expression analyses, all five genes were up- and down-regulated in response to abscisic acid (ABA), photoperiod, chilling, and chilling, as well as photoperiod treatments. Our findings gave insight into the SnRK2 family genes in L. chinense and opened up new study options.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Liriodendron , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Liriodendron/genética , Fotoperíodo , Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...