Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; : 174296, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944303

RESUMO

Nitrogen (N) is of great significance to the absorption, distribution and detoxification of cadmium (Cd). Ectomycorrhizal fungi (EMF) are able to affect the key processes of plant N uptake to resist Cd stress, while the mechanism is still unclear. Therefore, we explored potential strategies of Cenococcum geophilum (C. geophilum) symbiosis to alleviate Cd stress in Pinus massoniana (P. massoniana) from the perspective of plant N metabolism and soil N transformation. The results showed that inoculation of C. geophilum significantly increased the activities of NR, NiR and GS in the shoots and roots of P. massoniana, thereby promoting the assimilation of NO3- and NH4+ into amino acids. Moreover, C. geophilum promoted soil urease and protease activities, but decreased soil NH4+ content, indicating that C. geophilum might increase plant uptake of soil inorganic N. qRT-PCR results showed that C3 symbiosis significantly up-regulated the expression of genes encoding functions involved in NH4+ uptake (AMT3;1), NO3- uptake (NRT2.1, NRT2.4, NRT2.9), as well as Cd resistance (ABCC1 and ABCC2), meanwhile down-regulated the expression of NRT7.3, Cd transporter genes (HMA2 and NRAMP3) in the roots of P. massoniana seedlings. These results demonstrated that C. geophilum was able to alleviate Cd stress by increasing the absorption and assimilation of inorganic N in plants and inhibiting the transport of Cd from roots to shoots, which provided new insights into how EMF improved host resistance to abiotic stress.

2.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729407

RESUMO

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Assuntos
Cádmio , Ácido Salicílico , Sedum , Poluentes do Solo , Transcriptoma , Cádmio/toxicidade , Ácido Salicílico/metabolismo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Sedum/genética , Sedum/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Transcriptoma/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
3.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755437

RESUMO

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Assuntos
Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Técnicas de Tipagem Bacteriana , China , Fosfolipídeos/análise , Fixação de Nitrogênio , Análise de Sequência de DNA , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/metabolismo
4.
Ecotoxicol Environ Saf ; 278: 116425, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723385

RESUMO

The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.


Assuntos
Burkholderia , Nanopartículas Metálicas , Proteoma , Prata , Prata/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Proteoma/metabolismo , Burkholderia/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo
5.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921447

RESUMO

In this study, two novel alkalitolerant strains (FJAT-53046T and FJAT-53715T) were isolated from sediment samples collected in Zhangzhou, PR China. Phylogeny based on 16S rRNA gene sequences suggested that strains FJAT-53046T and FJAT-53715T were new members of the genus Pseudalkalibacillus. The two novel strains showed the highest 16S rRNA gene sequence similarity to Pseudalkalibacillus hwajinpoensis DSM 16206T, with values of 97.4 and 97.6 %, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains and the reference strain were 77.2 and 79.6 %, 20.9 and 30.2 %, respectively, which were below the prokaryotic species delineation thresholds. The ANI and dDDH values between strains FJAT-53046T and FJAT-53715T were 86.0 and 30.2 %, respectively, suggesting that they belonged to different species in the genus Pseudalkalibacillus. The major respiratory quinone in both strains was MK-7 and the major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids in both novel strains. Combined with results stemming from the determination of physical and biochemical characteristics, chemical properties, and genome analysis, strains FJAT-53046T and FJAT-53715T are proposed to represent two novel species of the genus Pseudalkalibacillus, for which the names Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov. are proposed. The type strains are FJAT-53046T (=GDMCC 1.3077T=JCM 35611T) and FJAT-53715T (=GDMCC 1.3076T=JCM 35610T), respectively.


Assuntos
Bacillus , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo , Parede Celular/química , Ácido Diaminopimélico/química , Peptidoglicano/química , Vitamina K 2/química
6.
Chemosphere ; 341: 140094, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678589

RESUMO

Microbial nitrogen fixation is a fundamental process in the nitrogen cycle, providing a continuous supply of biologically available nitrogen essential for life. In this study, we combined cerium oxide-doped carbon dots (CeO2/CDs) with electroactive nitrogen-fixing bacterium Azospirillum humicireducens SgZ-5T to enhance nitrogen fixation through ammonium production. Our research demonstrates that treatment of SgZ-5T cells with CeO2/CDs (0.2 mg mL-1) resulted in a 265.70% increase in ammonium production compared to SgZ-5T cells alone. CeO2/CDs facilitate electron transfer in the biocatalytic process, thereby enhancing nitrogenase activity. Additionally, CeO2/CDs reduce the concentration of reactive oxygen species in SgZ-5T cells, leading to increased ammonium production. The upregulation of nifD, nifH and nifK gene expression upon incorporation of CeO2/CDs (0.2 mg mL-1) into SgZ-5T cells supports this observation. Our findings not only provide an economical and environmentally friendly approach to enhance biological nitrogen fixation but also hold potential for alleviating nitrogen fertilizer scarcity.


Assuntos
Amônia , Compostos de Amônio , Antioxidantes , Carbono , Nitrogênio
7.
Plants (Basel) ; 12(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765343

RESUMO

Pinus massoniana (Massion's pine), a pioneer tree species, exhibits restoration potential in polluted mining areas. However, the physiological and molecular mechanisms of ectomycorrhizal (ECM) fungi in Massion's pine adaptability to multiple-toxic-metal stress are still unclear. Hence, Massion's pine seedlings inoculated with two strains of C. geophilum, which were screened and isolated from a polluted mine area, were cultivated in mine soil for 90 days to investigate the roles of EMF in mediating toxic metal tolerance in host plants. The results showed that compared with the non-inoculation control, C. geophilum (CG1 and CG2) significantly promoted the biomass, root morphology, element absorption, photosynthetic characteristics, antioxidant enzyme activities (CAT, POD, and SOD), and proline content of Massion's pine seedlings in mine soil. C. geophilum increased the concentrations of Cr, Cd, Pb, and Mn in the roots of Massion's pine seedlings, with CG1 significantly increasing the concentrations of Pb and Mn by 246% and 162% and CG2 significantly increasing the concentrations of Cr and Pb by 102% and 78%. In contrast, C. geophilum reduced the concentrations of Cr, Cd, Pb, and Mn in the shoots by 14%, 33%, 27%, and 14% on average, respectively. In addition, C. geophilum significantly reduced the transfer factor (TF) of Cr, Cd, Pb, and Mn by 32-58%, 17-26%, 68-75%, and 18-64%, respectively, and the bio-concentration factor (BF) of Cd by 39-71%. Comparative transcriptomic analysis demonstrated that the differently expressed genes (DEGs) were mainly encoding functions involved in "transmembrane transport", "ion transport", "oxidation reduction process", "oxidative phosphorylation", "carbon metabolism", "glycolysis/gluconeogenesis", "photosynthesis", and "biosynthesis of amino acids." These results indicate that C. geophilum is able to mitigate toxic metals stress by promoting nutrient uptake, photosynthesis, and plant growth, thereby modulating the antioxidant system to reduce oxidative stress and reducing the transport and enrichment of toxic metals from the root to the shoot of Massion's pine seedlings.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37327059

RESUMO

Mangrove bacteria largely compose the microbial community of the coastal ecosystem and are directly associated with nutrient cycling. In the present study, 12 Gram-negative and motile strains were isolated from a mangrove wetland in Zhangzhou, China. Pairwise comparisons (based on 16S rRNA gene sequences) and phylogenetic analysis indicated that these 12 strains belong to the genus Shewanella. The 16S rRNA gene sequence similarities among the 12 Shewanella strains and their related type strains ranged from 98.8 to 99.8 %, but they still could not be considered as known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the 12 strains and their related type strains were below the cut-off values (ANI 95-96% and dDDH 70 %) for prokaryotic species delineation. The DNA G+C contents of the present study strains ranged from 44.4 to 53.8 %. The predominant menaquinone present in all strains was MK-7. The present study strains (except FJAT-53532T) also contained ubiquinones (Q-8 and Q-7). The polar lipid phosphatidylglycerol and fatty acid iso-C15 : 0 was noticed in all strains. Based on phenotypic, chemotaxonomic, phylogenetic and genomic comparisons, we propose that these 12 strains represent 10 novel species within the genus Shewanella, with the names Shewanella psychrotolerans sp. nov. (FJAT-53749T=GDMCC 1.2398T=KCTC 82649T), Shewanella zhangzhouensis sp. nov. (FJAT-52072T=MCCC 1K05363T=KCTC 82447T), Shewanella rhizosphaerae sp. nov. (FJAT-53764T=GDMCC 1.2349T=KCTC 82648T), Shewanella mesophila sp. nov. (FJAT-53870T=GDMCC 1.2346T= KCTC 82640T), Shewanella halotolerans sp. nov. (FJAT-53555T=GDMCC 1.2344T=KCTC 82645T), Shewanella aegiceratis sp. nov. (FJAT-53532T=GDMCC 1.2343T=KCTC 82644T), Shewanella alkalitolerans sp. nov. (FJAT-54031T=GDMCC 1.2347T=KCTC 82642T), Shewanella spartinae sp. nov. (FJAT-53681T=GDMCC 1.2345T=KCTC 82641T), Shewanella acanthi sp. nov. (FJAT-51860T=GDMCC 1.2342T=KCTC 82650T) and Shewanella mangrovisoli sp. nov. (FJAT-51754T=GDMCC 1.2341T= KCTC 82647T).


Assuntos
Ácidos Graxos , Shewanella , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Ecossistema , Áreas Alagadas , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Genômica
9.
Microorganisms ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375020

RESUMO

Here a multiple heavy metal and antibiotic resistant bacterium Cupriavidus necator C39 (C. necator C39) was isolated from a Gold-Copper mine in Zijin, Fujian, China. C. necator C39 was able to tolerate intermediate concentrations of heavy metal(loid)s in Tris Minimal (TMM) Medium (Cu(II) 2 mM, Zn(II) 2 mM, Ni(II) 0.2 mM, Au(III) 70 µM and As(III) 2.5 mM). In addition, high resistance to multiple antibiotics was experimentally observed. Moreover, strain C39 was able to grow on TMM medium containing aromatic compounds such as benzoate, phenol, indole, p-hydroxybenzoic acid or phloroglucinol anhydrous as the sole carbon sources. The complete genome of this strain revealed 2 circular chromosomes and 1 plasmid, and showed the closest type strain is C. necator N-1T based on Genome BLAST Distance Phylogeny. The arsenic-resistance (ars) cluster GST-arsR-arsICBR-yciI and a scattered gene encoding the putative arsenite efflux pump ArsB were identified on the genome of strain C39, which thereby may provide the bacterium a robust capability for arsenic resistance. Genes encoding multidrug resistance efflux pump may confer high antibiotic resistance to strain C39. Key genes encoding functions in degradation pathways of benzene compounds, including benzoate, phenol, benzamide, catechol, 3- or 4-fluorobenzoate, 3- or 4-hydroxybenzoate and 3,4-dihydroxybenzoate, indicated its potential for degrading those benzene compounds.

10.
J Hazard Mater ; 443(Pt A): 130184, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36270189

RESUMO

Bacterial adaptation to extreme environments is often mediated by horizontal gene transfer (HGT) via genetic mobile elements. Nevertheless, phage-mediated HGT conferring bacterial arsenic resistance determinants has rarely been investigated. In this study, a highly arsenite and antimonite resistant bacterium, Citrobacter portucalensis strain Sb-2, was isolated, and genome analysis showed that several putative arsenite and antimonite resistance determinants were flanked or embedded in prophages. Furthermore, an active bacteriophage carrying one of the ars clusters (arsRDABC arsR-yraQ/arsP) was obtained and sequenced. These genes encoding putative arsenic resistance determinants were induced by arsenic and antimony as demonstrated by RT-qPCR, and one gene arsP/yraQ of the ars cluster was shown to give resistance to MAs(III) and Rox(III), thereby showing function. Here, we were able to directly show that these phage-mediated arsenic and antimony resistances play a significant role in adapting to As- and Sb-contaminated environments. In addition, we demonstrate that this phage is responsible for conferring arsenic and antimony resistances to C. portucalensis strain Sb-2.


Assuntos
Arsênio , Arsenitos , Bacteriófagos , Metaloides , Antimônio/toxicidade , Bacteriófagos/genética , Citrobacter/genética
11.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628430

RESUMO

Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).


Assuntos
Arsênio , Arsenitos , Caulobacteraceae , Roxarsona , Arsênio/metabolismo , Arsenitos/toxicidade , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacteraceae/metabolismo , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Ouro/metabolismo , Roxarsona/metabolismo , Roxarsona/farmacologia
12.
Appl Environ Microbiol ; 88(9): e0031222, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435714

RESUMO

The Gram-positive bacterium Paenibacillus taichungensis NC1 was isolated from the Zijin gold-copper mine and shown to display high resistance to arsenic (MICs of 10 mM for arsenite in minimal medium). Genome sequencing indicated the presence of a number of potential arsenic resistance determinants in NC1. Global transcriptomic analysis under arsenic stress showed that NC1 not only directly upregulated genes in an arsenic resistance operon but also responded to arsenic toxicity by increasing the expression of genes encoding antioxidant functions, such as cat, perR, and gpx. In addition, two highly expressed genes, marR and arsV, encoding a putative flavin-dependent monooxygenase and located adjacent to the ars resistance operon, were highly induced by As(III) exposure and conferred resistance to arsenic and antimony compounds. Interestingly, the zinc scarcity response was induced under exposure to high concentrations of arsenite, and genes responsible for iron uptake were downregulated, possibly to cope with oxidative stress associated with As toxicity. IMPORTANCE Microbes have the ability to adapt and respond to a variety of conditions. To better understand these processes, we isolated the arsenic-resistant Gram-positive bacterium Paenibacillus taichungensis NC1 from a gold-copper mine. The transcriptome responding to arsenite exposure showed induction of not only genes encoding arsenic resistance determinants but also genes involved in the zinc scarcity response. In addition, many genes encoding functions involved in iron uptake were downregulated. These results help to understand how bacteria integrate specific responses to arsenite exposure with broader physiological responses.


Assuntos
Arsênio , Arsenitos , Arsênio/metabolismo , Arsênio/toxicidade , Arsenitos/metabolismo , Arsenitos/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre , Ouro , Ferro , Óperon , Paenibacillus , Zinco
13.
Bioinorg Chem Appl ; 2021: 5985377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873399

RESUMO

The application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs. Marine macroalgae (brown, red, and green) are rich in polysaccharides including alginates, fucose-containing sulfated polysaccharides (FCSPs), galactans, agars or carrageenans, semicrystalline cellulose, ulvans, and hemicelluloses. Phytochemicals are abundant in phenols, tannins, alkaloids, terpenoids, and vitamins. However, microorganisms have an abundance of active compounds ranging from sugar molecules, enzymes, canonical membrane proteins, reductase enzymes (NADH and NADPH), membrane proteins to many more. The prime reason for using the aforesaid entities in the metallic NPs synthesis is based on their intrinsic properties to act as bioreductants, having the capability to reduce and cap the metal ions into stabilized NPs. Several green NPs have been verified for their biocompatibility in human cells. Bioactive constituents from the above resources have been found on the green metallic NPs, which has demonstrated their efficacies as prospective antibiotics and anti-cancer agents against a range of human pathogens and cancer cells. Moreover, these NPs can be characterized for the size, shapes, functional groups, surface properties, porosity, hydrodynamic stability, and surface charge using different characterization techniques. The novelty and originality of this review is that we provide recent research compilations on green synthesis of NPs by marine macroalgae and other biological sources (plant, bacteria, fungi, actinomycetes, yeast, and virus). Besides, we elaborated on the detailed intra- and extracellular mechanisms of NPs synthesis by marine macroalgae. The application of green NPs as anti-bacterial, anti-cancer, and popular methods of NPs characterization techniques has also been critically reviewed.

14.
Appl Environ Microbiol ; 87(24): e0158821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613763

RESUMO

In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog in Achromobacter sp. strain As-55. Genomic analyses of Achromobacter sp. As-55 showed that this marR is located adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite [MAs(III)], the organoarsenic compound roxarsone(III) [Rox(III)], and the inorganic antimonite [Sb(III)]. Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37, and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSAs) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Rox(III), and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics. IMPORTANCE In this study, a MarR family member, AdMarRars was shown to regulate the arsV gene, which confers resistance to arsenic-containing antibiotics. It is a founding member of a distinct subfamily that we refer to as MarRars, regulating genes conferring resistance to arsenic and antimony antibiotic compounds. AdMarRars was shown to be a repressor containing conserved cysteine residues that are required to bind As(III) and Sb(III), leading to a conformational change and subsequent derepression. Here we show that members of the MarR family are involved in regulating arsenic-containing compounds.


Assuntos
Achromobacter/genética , Arsênio , Arsenicais , Genes Bacterianos , Achromobacter/efeitos dos fármacos , Antibacterianos , Arsênio/farmacologia , Arsenicais/farmacologia , Cisteína , Farmacorresistência Bacteriana , Família Multigênica , Filogenia , Roxarsona/farmacologia
15.
J Appl Toxicol ; 41(5): 847-860, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629750

RESUMO

Carbofuran is a broad-spectrum carbamate insecticide, which principally inhibits the acetylcholinesterase (AChE) enzyme in the nervous system. Nonetheless, their selective action is not restricted to a single species and expanded to humans. No studies are available on the toxicological effects of carbofuran in the endothelial cells (ECs), which first confronts the toxicants in blood vessels. Hence, we have exposed the human umbilical vein ECs (HUVECs) with carbofuran for 24 h, which significantly reduced the cell survival to 25.16% and 33.48% at 500 and 1,000 µM analyzed by MTT assay. In the neutral red uptake (NRU) assay, 16.68%, 30.99%, and 58.11% survival decline was found at 250, 500, and 1,000 µM of carbofuran. HUVECs exposed to carbofuran showed significant increase in the intracellular reactive oxygen species (ROS), indicating oxidative stress at low concentrations. In parallel, HUVECs showed hyperpolarization effects in the mitochondrial membrane potential (ΔΨm) upon carbofuran exposure. Carbofuran induced DNA damage in HUVECs measured as 8.80, 11.82, 35.56, and 79.69 Olive tail moment (OTM) in 100-, 250-, 500-, and 1,000-µM exposure groups. Flow cytometric analysis showed apoptotic peak (SubG1) and G2M arrest in the HUVECs exposed to carbofuran. Overall, our novel data confirm that carbofuran is toxic for the EC cells, especially at the higher concentrations, which may affect the vascular functions and possibly angiogenesis. Hence, carbofuran should be applied judiciously, and detailed vascular studies are warranted to gain an in-depth information focusing the transcriptomic and translation changes employing suitable in vivo and in vitro test models.


Assuntos
Carbofurano/toxicidade , Inseticidas/toxicidade , Acetilcolinesterase/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
J Appl Toxicol ; 41(5): 832-846, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427323

RESUMO

Pesticides have adverse effects on the cellular functionality, which may trigger myriad of health consequences. However, pesticides-mediated toxicity in the endothelial cells (ECs) is still elusive. Hence, in this study, we have used human umbilical vein endothelial cells (HUVECs) as a model to quantify the cytotoxicity and genotoxicity of four pesticides (methomyl, carbaryl, metalaxyl, and pendimethalin). In the MTT assay, HUVECs exposed to methomyl, carbaryl, metalaxyl, and pendimethalin demonstrated significant proliferation inhibition only at higher concentrations (500 and 1000 µM). Likewise, neutral red uptake (NRU) assay also showed proliferation inhibition of HUVECs at 500 and 1000 µM by the four pesticides, confirming lysosomal fragility. HUVECs exposed to the four pesticides significantly increased the level of intracellular reactive oxygen species (ROS). Comet assay and flow cytometric data exhibited DNA damage and apoptotic cell death in HUVECs after 24 h of exposure with methomyl, metalaxyl, carbaryl, and pendimethalin. This is a first study on HUVECs signifying the cytotoxic-genotoxic and apoptotic potential of carbamate insecticides (methomyl and carbaryl), fungicide (metalaxyl), and herbicide (pendimethalin). Overall, these pesticides may affect ECs functions and angiogenesis; nonetheless, mechanistic studies are warranted from the perspective of vascular biology using in vivo test models.


Assuntos
Alanina/análogos & derivados , Compostos de Anilina/toxicidade , Carbaril/toxicidade , Metomil/toxicidade , Praguicidas/toxicidade , Alanina/toxicidade , Ensaio Cometa , Dano ao DNA , Herbicidas , Células Endoteliais da Veia Umbilical Humana , Humanos , Inseticidas/toxicidade , Espécies Reativas de Oxigênio
17.
Plants (Basel) ; 9(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947725

RESUMO

The cultivated cucumber (Cucumis sativus L.) was reported to have been developed from a wild cucumber (Cucumis hystrix Chakrav.), nevertheless, these two organisms exhibit noteworthy differences. For example, the wild cucumber is known for its high resistance to different biotic and abiotic stresses. Moreover, the leaves and fruits of the wild cucumber have a bitter taste compared to the cultivated cucumber. These differences could be attributed mainly to the differences in gene expression levels. In the present investigation, we analyzed the RNA-sequencing data to show the differentially expressed genes (DEGs) between the wild and cultivated cucumbers. The identified DEGs were further utilized for Gene Ontology (GO) and pathway enrichment analysis and for identification of transcription factors and regulators. In the results, several enriched GO terms in the biological process, cellular component, and molecular functions categories were identified and various enriched pathways, especially the biosynthesis pathways of secondary products were recognized. Plant-specific transcription factor families were differentially expressed between the wild and cultivated cucumbers. The results obtained provide preliminary evidence for the transcriptional differences between the wild and cultivated cucumbers which developed during the domestication process as a result of natural and/or artificial selection, and they formulate the basis for future genetic research and improvement of the cultivated cucumber.

18.
Chemosphere ; 244: 125488, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812053

RESUMO

Nickel oxide nanoparticles (NiO-NPs) have been used in several consumer goods, reported to demonstrate the hepatotoxic effects in vitro and in vivo test models. Nonetheless the molecular mechanism of hepatotoxicity is still missing. Hence, a toxicogenomic approach integrating microscopic techniques and high-throughput RNA sequencing (RNA-Seq) was applied to reveal hepatotoxicity in human hepatocellular carcinoma cells (HepG2). NiO-NPs induced a concentration dependent (5-100 µg/ml) cytotoxicity, with a No observed effect level (NOEL) of 5 µg/ml. Hypoxia-inducible transcription factor-1α (HIF-1α) and miR-210 microRNA were upregulated at 25 and 100 µg/ml, while significant alteration on transcriptome at mRNA and pathway level was observed at non-toxic level of NiO-NPs treatment. The treated cells also showed activation of glycolysis, glutathione, lysosomes and autophagy pathways by a pathway-driven analysis. Flow cytometric analysis affirmed the elevation in nitric oxide (NO), Ca++ influx, esterase, and disruption of mitochondrial membrane potential (ΔΨm). Cell cycle dysregulation was affirmed by the appearance of 30.5% subG1 apoptotic peak in NiO-NPs (100 µg/ml) treated cells. The molecular responses were consistent with the microscopic observation that NiO-NPs induced subcellular alterations in HepG2 cells. We conclude that hypoxia stress played a pivotal role in NiO-NPs induced hepatoxicity in HepG2 cells. Concentration dependent effects on transcriptomics specify a powerful tool to evaluate the molecular mechanisms of nanoparticle induced cytotoxicity. Overall our study unequivocally affirmed the transcriptomic alterations in human cells, consequently the prevalent usage of NiO-NPs should be given subtle consideration owing to its effects on biological processes.


Assuntos
Substâncias Perigosas/toxicidade , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Testes de Toxicidade , Ciclo Celular/efeitos dos fármacos , Glutationa/metabolismo , Células Hep G2 , Humanos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
19.
J Microbiol Methods ; 166: 105716, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499093

RESUMO

We provide a novel one-step/one-pot bio-inspired method of synthesis for Myristica fragrans leaf ester (MFLE) capped­zinc oxide nanoparticles (MFLE-ZnONPs). Antibacterial and antbiofilm efficacies of MFLE-ZnONPs were tested against the multi-drug resistant (MDR) Escherichia coli (E. coli-336), methicillin-resistant Staphylococcus aureus (MRSA-1) and methicillin-sensitive (MSSA-2) clinical isolates. Antibacterial screening using well diffusion assay revealed the cytotoxicity of MFLE-ZnONPs in the range of 500-2000 µg/ml. MFLE-ZnONPs significantly increased the zone of growth inhibition of E. coli-336 (17.0 ±â€¯0.5 to 19.25 ±â€¯1.0 mm), MSSA-2 (16.75 ±â€¯0.8 to 19.0 ±â€¯0.7 mm) and MRSA-1 (16.25 ±â€¯1.0 to 18.25 ±â€¯0.5 mm), respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC) against E. coli-336, MRSA-1 and MSSA-2 were found to be 1500, 1000 and 500 µg/ml, and 2500, 2000 and 1500 µg/ml, respectively. A time and dose dependent reduction in the cell proliferation were also found at the respective MICs of tested strains. Scanning electron microscopy (SEM) of MFLE-ZnONPs-treated strains exhibited cellular damage via loss of native rod and coccoid shapes because of the formation of pits and cavities. E. coli-336 and MRSA-1 strains at their MICs (1500 and 1000 µg/ml) sharply reduced the biofilm production to 51% and 24%. The physico-chemical characterization via x-ray diffraction (XRD) ascertained the crystallinity and an average size of MFLE-ZnONPs as 48.32 ±â€¯2.5 nm. Gas chromatography-mass spectroscopy (GC-MS) analysis of MFLE-ZnONPs unravelled the involvement of two bio-active esters (1) butyl 3-oxobut-2-yl ester and (2) α-monoolein) as surface capping/stabilizing agents. Fourier transform infrared (FTIR) analysis of MFLE and MFLE-ZnONPs showed the association of amines, alkanes, aldehydes, amides, carbonyl and amines functional groups in the corona formation. Overall, our data provide novel insights on the rapid development of eco-friendly, cost-effective bio-synthesis of MFLE-ZnONPs, showing their putative application as nano-antibiotics against MDR clinical isolates.


Assuntos
Ésteres/farmacologia , Nanopartículas Metálicas/química , Myristica/metabolismo , Extratos Vegetais/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Folhas de Planta/metabolismo
20.
Front Microbiol ; 9: 2473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405552

RESUMO

Arsenic is a metalloid that occurs naturally in aquatic and terrestrial environments. The high toxicity of arsenic derivatives converts this element in a serious problem of public health worldwide. There is a global arsenic geocycle in which microbes play a relevant role. Ancient exposure to arsenic derivatives, both inorganic and organic, has represented a selective pressure for microbes to evolve or acquire diverse arsenic resistance genetic systems. In addition, arsenic compounds appear to have been used as a toxin in chemical warfare for a long time selecting for an extended range of arsenic resistance determinants. Arsenic resistance strategies rely mainly on membrane transport pathways that extrude the toxic compounds from the cell cytoplasm. The ars operons, first discovered in bacterial R-factors almost 50 years ago, are the most common microbial arsenic resistance systems. Numerous ars operons, with a variety of genes and different combinations of them, populate the prokaryotic genomes, including their accessory plasmids, transposons, and genomic islands. Besides these canonical, widespread ars gene clusters, which confer resistance to the inorganic forms of arsenic, additional genes have been discovered recently, which broadens the spectrum of arsenic tolerance by detoxifying organic arsenic derivatives often used as toxins. This review summarizes the presence, distribution, organization, and redundance of arsenic resistance genes in prokaryotes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...