Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 17(1): 2139115, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36420997

RESUMO

Root parasitic weed Phelipanche aegyptiaca is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of P. aegyptiaca which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the P. aegyptiaca using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of P. aegyptiaca parasite tubercles attached to the root of the host plant Nicotiana benthamiana was substantially decreased in all the silenced plants. However, silencing of the P. aegyptiaca MNT1 gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of P. aegyptiaca plays a crucial role in parasitic germination, and silencing of the PaMNT1 gene abolishes the germination of parasites on the host roots.


Assuntos
Orobanchaceae , Parasitos , Animais , Germinação/genética , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Plantas Daninhas , Manitol
2.
Front Bioeng Biotechnol ; 9: 602464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937210

RESUMO

Phenyl urea herbicides are being extensively used for weed control in both agricultural and non-agricultural applications. Linuron is one of the key herbicides in this family and is in wide use. Like other phenyl urea herbicides, it is known to have toxic effects as a result of its persistence in the environment. The natural removal of linuron from the environment is mainly carried through microbial biodegradation. Some microorganisms have been reported to mineralize linuron completely and utilize it as a carbon and nitrogen source. Variovorax sp. strain SRS 16 is one of the known efficient degraders with a recently sequenced genome. The genomic data provide an opportunity to use a genome-scale model for improving biodegradation. The aim of our study is the construction of a genome-scale metabolic model following automatic and manual protocols and its application for improving its metabolic potential through iterative simulations. Applying flux balance analysis (FBA), growth and degradation performances of SRS 16 in different media considering the influence of selected supplements (potential carbon and nitrogen sources) were simulated. Outcomes are predictions for the suitable media modification, allowing faster degradation of linuron by SRS 16. Seven metabolites were selected for in vitro validation of the predictions through laboratory experiments confirming the degradation-promoting effect of specific amino acids (glutamine and asparagine) on linuron degradation and SRS 16 growth. Overall, simulations are shown to be efficient in predicting the degradation potential of SRS 16 in the presence of specific supplements. The generated information contributes to the understanding of the biochemistry of linuron degradation and can be further utilized for the development of new cleanup solutions without any genetic manipulation.

3.
Planta ; 253(5): 97, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844068

RESUMO

MAIN CONCLUSION: New transgenic and biotechnological approaches may serve as a key component in achieving crop resistance to root parasitic weeds. Root parasitic weeds inflict severe damage to numerous crops, reducing yield quantity and quality. A lack of new sources of resistance limits our ability to manage newly developing, more virulent races. Having no effective means to control the parasites in most crops, innovative biotechnological solutions are needed. Several novel biotechnological strategies using regulatory RNA molecules, the CRISPR/Cas9 system, and T-DNA insertions have been acknowledged for engineering resistance against parasitic weeds. Significant breakthroughs have been made over the years in deciphering the plant genome and its functions, including the genomes of parasitic weeds. However, the basis of biotechnological strategies to generate host resistance to root parasitic weeds needs to be further developed. Gene-silencing and editing tools should be used to target key processes of host-parasite interactions, such as strigolactone biosynthesis and signaling, haustorium development, and degradation and penetration of the host cell wall. In this review, we summarize and discuss the main areas of research leading to the discovery and functional analysis of genes involved in host-induced gene silencing that target key parasite genes, transgenic host modification, and host gene editing to generate sustainable resistance to root parasitic weeds.


Assuntos
Orobanche , Plantas Daninhas , Produtos Agrícolas/genética , Interações Hospedeiro-Parasita , Raízes de Plantas/genética , Plantas Daninhas/genética
4.
J Plant Res ; 134(3): 585-597, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33704586

RESUMO

Phelipanche aegyptiaca and Orobanche spp. are obligate plant root-parasitic weeds that cause extensive damage in agricultural crop plants. Their germination requires exposure to strigolactones (SLs) exuded by the host plant roots. Here we studied genes in the host plant tomato involved in SL exudation and their impact on parasitic weeds. We provide evidence that CRISPR/Cas9-mediated targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes, ABCG44 (Solyc08g067610) and ABCG45 (Solyc08g067620), in tomato significantly reduces SLs in the root exudate and abolishes germination of the root-parasitic weed P. aegyptiaca. Based on genome sequence similarity between ABCG44 and ABCG45, a 20-bp target sequence in their exon region was selected to design single guide RNA targeting both genes using CRISPR/Cas9. The plant binary vector constructs harboring the specific Cas9 and single guide RNA were transformed into tomato. Selected T0 mutated tomato plants showed different types of deletions at both gene loci. Genotype analysis of T1 plants suggested stable inheritance of the introduced mutations without any potential off-target effects. The phenotype of Cas9-mutated plants included increased shoot branching and growth of axillary buds, and reduced length of primary stems. Interestingly, reduced germination of P. aegyptiaca resulted from a decrease in the SL orobanchol in the root exudate of Cas9-mutated plants; however, orobanchol content in the root extract was unchanged compared to control plants. Moreover, in single and double ABCG mutants, expression of the SL-biosynthesis genes CCD8 and MAX1 decreased. The current study offers insights into CRISPR-mediated mutagenesis of ABCG genes, which could serve as an efficient control method to prevent root-parasitic weed germination.


Assuntos
Orobanche , Solanum lycopersicum , Trifosfato de Adenosina , Germinação , Solanum lycopersicum/genética , Mutagênese , Orobanche/genética , Raízes de Plantas/genética , Plantas Daninhas/genética
5.
Sci Rep ; 11(1): 3905, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594101

RESUMO

Root parasitic weeds infect numerous economically important crops, affecting total yield quantity and quality. A lack of an efficient control method limits our ability to manage newly developing and more virulent races of root parasitic weeds. To control the parasite induced damage in most host crops, an innovative biotechnological approach is urgently required. Strigolactones (SLs) are plant hormones derived from carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase (CCD) 7, CCD8 and More Axillary Growth 1 (MAX1) genes. SLs act as branching inhibitory hormones and strictly required for the germination of root parasitic weeds. Here, we demonstrate that CRISPR/Cas9-mediated targted editing of SL biosynthetic gene MAX1, in tomato confers resistance against root parasitic weed Phelipanche aegyptiaca. We designed sgRNA to target the third exon of MAX1 in tomato plants using the CRISPR/Cas9 system. The T0 plants were edited very efficiently at the MAX1 target site without any non-specific off-target effects. Genotype analysis of T1 plants revealed that the introduced mutations were stably passed on to the next generation. Notably, MAX1-Cas9 heterozygous and homozygous T1 plants had similar morphological changes that include excessive growth of axillary bud, reduced plant height and adventitious root formation relative to wild type. Our results demonstrated that, MAX1-Cas9 mutant lines exhibit resistance against root parasitic weed P. aegyptiaca due to reduced SL (orobanchol) level. Moreover, the expression of carotenoid biosynthetic pathway gene PDS1 and total carotenoid level was altered, as compared to wild type plants. Taking into consideration, the impact of root parasitic weeds on the agricultural economy and the obstacle to prevent and eradicate them, the current study provides new aspects into the development of an efficient control method that could be used to avoid germination of root parasitic weeds.


Assuntos
Interações Hospedeiro-Parasita/genética , Orobanchaceae , Solanum lycopersicum/parasitologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Edição de Genes , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Daninhas
6.
Insects ; 11(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114086

RESUMO

Control of the crop pest African cotton leafworm, Spodoptera littoralis (Boisduval), by chemical insecticides has led to serious resistance problems. Ajuga plants contain phytoecdysteroids (arthropod steroid hormone analogs regulating metamorphosis) and clerodanes (diterpenoids exhibiting antifeedant activity). We analyzed these compounds in leaf extracts of the Israeli Ajuga iva L. by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and thin-layer chromatography (TLC), and their efficiency at reducing S.littoralis fitness. First and third instars of S. littoralis were fed castor bean leaves (Ricinus communis) smeared with an aqueous suspension of dried methanolic crude extract of A. iva phytoecdysteroids and clerodanes. Mortality, larval weight gain, relative growth rate and survival were compared to feeding on control leaves. We used '4',6-diamidino-2-phenylindole (DAPI, a fluorescent stain) and phalloidin staining to localize A. iva crude leaf extract activity in the insect gut. Ajuga iva crude leaf extract (50, 100 and 250 µg/µL) significantly increased mortality of first-instar S. littoralis (36%, 70%, and 87%, respectively) compared to controls (6%). Third-instar larval weight gain decreased significantly (by 52%, 44% and 30%, respectively), as did relative growth rate (-0.05 g/g per day compared to the relevant controls), ultimately resulting in few survivors. Crude leaf extract (250 µg/µL) reduced gut size, with relocation of nuclei and abnormal actin-filament organization. Ajug iva extract has potential for alternative, environmentally safe insect-pest control.

7.
Sci Rep ; 10(1): 13019, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747737

RESUMO

Atrazine is an herbicide and a pollutant of great environmental concern that is naturally biodegraded by microbial communities. Paenarthrobacter aurescens TC1 is one of the most studied degraders of this herbicide. Here, we developed a genome scale metabolic model for P. aurescens TC1, iRZ1179, to study the atrazine degradation process at organism level. Constraint based flux balance analysis and time dependent simulations were used to explore the organism's phenotypic landscape. Simulations aimed at designing media optimized for supporting growth and enhancing degradation, by passing the need in strain design via genetic modifications. Growth and degradation simulations were carried with more than 100 compounds consumed by P. aurescens TC1. In vitro validation confirmed the predicted classification of different compounds as efficient, moderate or poor stimulators of growth. Simulations successfully captured previous reports on the use of glucose and phosphate as bio-stimulators of atrazine degradation, supported by in vitro validation. Model predictions can go beyond supplementing the medium with a single compound and can predict the growth outcomes for higher complexity combinations. Hence, the analysis demonstrates that the exhaustive power of the genome scale metabolic reconstruction allows capturing complexities that are beyond common biochemical expertise and knowledge and further support the importance of computational platforms for the educated design of complex media. The model presented here can potentially serve as a predictive tool towards achieving optimal biodegradation efficiencies and for the development of ecologically friendly solutions for pollutant degradation.


Assuntos
Atrazina/metabolismo , Genoma Bacteriano , Herbicidas/metabolismo , Micrococcaceae/metabolismo , Biodegradação Ambiental , Microbiota , Micrococcaceae/genética , Poluentes do Solo/metabolismo
8.
Plant Signal Behav ; 15(7): 1766292, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32425100

RESUMO

PHELIPANCHE AEGYPTIACA: is an obligate holo-parasitic weedlacking a functional photosynthetic system, which subsists on roots of a wide range of host crops, causing severe losses in yield quality and quantity. The parasite and its host are connected through their vascular system, forming a unique ecological system that enables the exchange of various substances. In a previous study, it was suggested that endophytic bacteria, which naturally inhabit the internal tissues of plants, can also be transmitted from the parasitic weed to its host and vice versa. In the current study, we investigate the characteristics of a previously isolated Pseudomonas sp. PhelS10 strain using both biochemical and molecular methods. This isolate was obtained from tomato plant tissue and was able to reduce P. aegyptiaca parasitism, and thus it may serve as a biocontrol agent. Our results revealed that production of Pseudomonas aeruginosa quinolone signal (PQS) was 2.1 times higher than that of the standard Pseudomonas aeruginosa strain (PAO1), which contributed to a 22% higher biofilm formation capability. PhelS10 strain was detected in the xylem of tomato plants using FISH analysis. In addition, PhelS10 strain was found in the parasitic weed's inner tissues, confirming the hypothesis that endophytic bacteria traffic between the host plant and its parasitic weed.


Assuntos
Plantas Daninhas/microbiologia , Pseudomonas aeruginosa/fisiologia , Solanum lycopersicum/microbiologia , Orobanchaceae/microbiologia
9.
Sci Rep ; 9(1): 11438, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391538

RESUMO

Broomrapes (Phelipanche aegyptiaca and Orobanche spp.) are obligate plant parasites that cause extreme damage to crop plants. The parasite seeds have strict requirements for germination, involving preconditioning and exposure to specific chemicals strigolactones [SLs] exuded by the host roots. SLs are plant hormones derived from plant carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase 8 (CCD8). Having no effective means to control parasitic weeds in most crops, and with CRISPR/Cas9 being an effective gene-editing tool, here we demonstrate that CRISPR/Cas9-mediated mutagenesis of the CCD8 gene can be used to develop host resistance to the parasitic weed P. aegyptiaca. Cas9/single guide (sg) RNA constructs were targeted to the second exon of CCD8 in tomato (Solanum lycopersicum L.) plants. Several CCD8Cas9 mutated tomato lines with variable insertions or deletions in CCD8 were obtained with no identified off-targets. Genotype analysis of T1 plants showed that the introduced CCD8 mutations are inherited. Compared to control tomato plants, the CCD8Cas9 mutant had morphological changes that included dwarfing, excessive shoot branching and adventitious root formation. In addition, SL-deficient CCD8Cas9 mutants showed a significant reduction in parasite infestation compared to non-mutated tomato plants. In the CCD8Cas9 mutated lines, orobanchol (SL) content was significantly reduced but total carotenoids level and expression of genes related to carotenoid biosynthesis were increased, as compared to control plants. Taking into account, the impact of plant parasitic weeds on agriculture and difficulty to constitute efficient control methods, the current study offers insights into the development of a new, efficient method that could be combined with various collections of resistant tomato rootstocks.


Assuntos
Dioxigenases/genética , Resistência à Doença/genética , Orobanche , Proteínas de Plantas/genética , Plantas Daninhas , Solanum lycopersicum/parasitologia , Sistemas CRISPR-Cas/genética , Carotenoides/metabolismo , Dioxigenases/metabolismo , Éxons/genética , Regulação da Expressão Gênica de Plantas , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Mutagênese , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
10.
Microorganisms ; 7(6)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208074

RESUMO

Penicillium expansum is a major postharvest pathogen that infects different fruits, mainly through injuries inflicted during harvest or subsequent handling after harvest. Several effectors were suggested to mediate pathogenicity of P. expansum in fruit tissue. Among these effectors Nep1-like proteins (NLPs), produced by various microorganisms with different lifestyles, are known for their ability to induce necrosis in dicot plants and were shown to be involved in virulence of several plant-related pathogens. This study was aimed at the identification and functional characterization of two NLP genes found in the genome of P. expansum. The genes were designated Penlp1 and Penlp2 and were found to code type1 and type3 NLP respectively. Necrosis-inducing activity of the two proteins was demonstrated by transient expression in Nicotiana benthamiana leaves. While Penlp1 expression was induced during apple infection and in liquid culture, the highest level of Penlp2 expression was found in ungerminated spores. Deletion of Penlp1, but not Penlp2, resulted in reduced virulence on apples manifested by reduced rate of lesion development (disease severity).

11.
Plant Signal Behav ; 14(4): e1581558, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30806150

RESUMO

Weeds, a main threat to agricultural productivity worldwide, are mostly controlled by herbicides. To minimize herbicide usage by targeting only weedy areas, we developed a new methodology for robust weed detection that relies on manipulating the crop plant's leaf hue, without affecting crop fitness. We generated transgenic tobacco (Nicotiana tabacum Xanthi) lines overexpressing the anthocyanin pigment as a traceable marker that differentiates transgenes from the surrounding weeds at an early stage. Transformation with the anthocyanin VlmybA1-2 gene produced purple-colored leaves. Subsequent gene silencing with vector pTRV2:VlmybA1-2 significantly reduced anthocyanin pigments in tobacco leaves 40 days after agroinfiltration, with a concomitant reduction in VlmybA1-2 transcript levels. Purple hue faded gradually, and there were no fitness costs in terms of plant height or leaf number in the silenced vs. non-silenced tobacco transgenes. These results could lead to a new sustainable weed-control method that will alleviate weed-related ecological, agricultural and economic issues.


Assuntos
Antocianinas/genética , Produtos Agrícolas/genética , Nicotiana/genética , Pigmentação/genética , Controle de Plantas Daninhas , Antocianinas/metabolismo , Inativação Gênica , Herbicidas , Plantas Daninhas , Plantas Geneticamente Modificadas , Transgenes
12.
Front Plant Sci ; 8: 1574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955363

RESUMO

RNA silencing refers to diverse mechanisms that control gene expression at transcriptional and post-transcriptional levels which can also be used in parasitic pathogens of plants that Broomrapes (Orobanche/Phelipanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops and cause severe negative effects on the yield and yield quality of those crops. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we suggest an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipanche aegyptiaca genes PaACS, PaM6PR, and PaPrx1 (pma): transient expression using Tobacco rattle virus (TRV:pma) as a virus-induced gene-silencing vector and stable expression in transgenic tomato Solanum lycopersicum (Mill.) plants harboring a hairpin construct (pBINPLUS35:pma). siRNA-mediated transgene-silencing (20-24 nt) was detected in the host plants. Our results demonstrate that the quantities of PaACS and PaM6PR transcripts from P. aegyptiaca tubercles grown on transgenic tomato or on TRV-infected Nicotiana benthamiana plants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamiana plants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes.

13.
Front Plant Sci ; 8: 269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28298918

RESUMO

Broomrapes (Phelipanche/Orobanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops, establishing direct connections with the host vascular system. This connection allows for the exchange of various substances and a possible exchange of endophytic microorganisms that inhabit the internal tissues of both plants. To shed some light on bacterial interactions occurring between the parasitic Phelipanche aegyptiaca and its host tomato, we characterized the endophytic composition in the parasite during the parasitization process and ascertained if these changes were accompanied by changes to endophytes in the host root. Endophyte communities of the parasitic weed were significantly different from that of the non-parasitized tomato root but no significant differences were observed between the parasite and its host after parasitization, suggesting the occurrence of bacterial exchange between these two plants. Moreover, the P. aegyptiaca endophytic community composition showed a clear shift from gram negative to gram-positive bacteria at different developmental stages of the parasite life cycle. To examine possible functions of the endophytic bacteria in both the host and the parasite plants, a number of unique bacterial candidates were isolated and characterized. Results showed that a Pseudomonas strain PhelS10, originating from the tomato roots, suppressed approximately 80% of P. aegyptiaca seed germination and significantly reduced P. aegyptiaca parasitism. The information gleaned in the present study regarding the endophytic microbial communities in this unique ecological system of two plants connected by their vascular system, highlights the potential of exploiting alternative environmentally friendly approaches for parasitic weed control.

14.
J Cancer Res Clin Oncol ; 142(7): 1499-508, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27155666

RESUMO

CONTEXT AND OBJECTIVES: The unmonitored use of herbal medicinal remedies by patients with cancer presents a significant challenge to oncology healthcare professionals. We describe an increasingly popular herbal "wonder drug," Ephedra foeminea (Alanda in Arabic), whose use has spread from the Palestinian patient population throughout the Middle East. We conducted a multicentered and multidisciplinary collaborative research effort in order to understand the potential benefits and harms of this popular herbal remedy. METHODS: We conducted an in-depth search of the medical literature, both traditional and modern, for any mention of the clinical use of Alanda for the treatment of cancer. We then tested the remedy, first for toxic ephedra alkaloid components and then for anticancer effects, as well as effects on the cytotoxic activity of chemotherapy agents (cisplatin and carboplatin) on breast cancer cell cultures. RESULTS: We found no mention in the literature, both conventional and traditional, on the use of Alanda for the treatment of cancer. Laboratory testing did not find any toxic components (i.e., ephedra alkaloids) in the preparation. However, in vitro exposure to Alanda led to a reduced cytotoxic effect of chemotherapy on breast cancer cell cultures. CONCLUSIONS: The use of an integrative ethnobotanical, laboratory and clinical research-based approach can be extremely helpful when providing nonjudgmental and evidence-based guidance to patients with cancer, especially on the use of traditional herbal medicine. The effectiveness and safety of these products need to be examined by integrative physicians who are dually trained in both complementary medicine and supportive cancer care.


Assuntos
Antineoplásicos/uso terapêutico , Ephedra , Medicina Herbária , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Humanos
15.
Plant Signal Behav ; 9(10): e972146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482816

RESUMO

Cucumber Mosaic Virus (CMV) is a highly infectious cucumovirus, which infects more than 800 plant species and causes major diseases in greenhouse and field crops worldwide. Parasitic weeds such as Phelipanche aegyptiaca are a major constraint to the production of many crops in the world and the parasite's lifestyle makes control extremely difficult. The parasite seeds can germinate after conditioning and perceiving strigolactones secreted by the host roots. Strigolactones are rhizosphere signaling molecules in plants that are biosynthesized through carotenoid cleavage. In the present study we investigated the possibility of reducing ß-carotene and then strigolactone production in the host roots by blocking carotenoid biosynthesis using CMV-infected tobacco. It was found that CMV downregulated the enzyme phytoene desaturase(PDS) and reduced significantly both carotenoid production and Phelipanche infection in tobacco host roots infected with both CMV and P. aegyptiaca. Based on our results (decrease of ß-carotene and repression of PDS transcripts in tobacco roots), we hypothesized that the reduction of Phelipanche tubercles and shoots occurred due to an effect of CMV on secondary metabolite stimulators such as strigolacetones. Our study indicated that mass production of the host roots was not affected by CMV; however, most inflorescences of Phelipanche grown on CMV-infected tobacco developed abnormally (deformed shoots and short nodes). Carotenoid biosynthesis inhibitors such as CMV can be used to reduce the production of strigolactones, which will lead to decreased Phelipanche attachment. Interestingly, attenuated CMV strains may provide a safe means for enhancing crop resistance against parasitic weeds in a future plan.


Assuntos
Carotenoides/antagonistas & inibidores , Cucumovirus/fisiologia , Nicotiana/parasitologia , Nicotiana/virologia , Orobanche/fisiologia , Vias Biossintéticas , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/virologia , Plantas Daninhas/fisiologia , Nicotiana/genética
16.
Pest Manag Sci ; 70(7): 1059-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24023038

RESUMO

BACKGROUND: Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. RESULTS: We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. CONCLUSION: The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models.


Assuntos
Plantas Geneticamente Modificadas/genética , Solanum lycopersicum/genética , Controle de Plantas Daninhas/métodos , Aumento da Imagem , Solanum lycopersicum/metabolismo , Pigmentação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo
17.
Plant Signal Behav ; 9(8): e29376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763619

RESUMO

Strigolactones are phytohormones that stimulate seed germination of parasitic plants including Phelipanche aegyptiaca. Strigolactones are derived from carotenoids via a pathway involving the carotenoid cleavage dioxygenases CCD7 and CCD8. We report here identification of PaCCD7 and PaCCD8 orthologous genes from P. aegyptiaca. Expression analysis of PaCCD7 and PaCCD8 genes showed significant variation in their transcript levels in seeds and tubercles of P. aegyptiaca at different developmental stages. These two parasitic PaCCD7 and PaCCD8 genes were silenced in P. aegyptiaca using a trans-silencing approach in Nicotiana benthamiana. The transient knock-down of PaCCD7 and PaCCD8 inhibited tubercle development and the infestation process in host plants. Our results suggest an important role of the strigolactone associated genes (PaCCD7 and PaCCD8) in the parasite life cycle.


Assuntos
Dioxigenases/genética , Inativação Gênica , Orobanche/genética , Doenças das Plantas , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Vírus de Plantas , Animais , Genes de Plantas , Lactonas/metabolismo , Orobanche/crescimento & desenvolvimento , Orobanche/virologia , Parasitos , Doenças Parasitárias , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Nicotiana/genética , Transcrição Gênica
18.
J Agric Food Chem ; 61(50): 12244-52, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24289159

RESUMO

Carotenoids are isoprenoid pigments that upon oxidative cleavage lead to the production of norisoprenoids that have profound effect on flavor and aromas of agricultural products. The biosynthetic pathway to norisoprenoids in carrots (Daucus carota L.) is still largely unknown. We found the volatile norisoprenoids farnesylacetone, α-ionone, and ß-ionone accumulated in Nairobi, Rothild, and Purple Haze cultivars but not in Yellowstone and Creme de Lite in a pattern reflecting their carotenoid content. A cDNA encoding a protein with carotenoid cleavage dioxygenase activity, DcCCD1, was identified in carrot and was overexpressed in Escherichia coli strains previously engineered to produce different carotenoids. The recombinant DcCCD1 enzyme cleaves cyclic carotenes to generate α- and ß-ionone. No cleavage products were found when DcCCD1 was co-expressed in E. coli strains accumulating non-cyclic carotenoids, such as phytoene or lycopene. Our results suggest a role for DcCCD1 in carrot flavor biosynthesis.


Assuntos
Daucus carota/enzimologia , Dioxigenases/metabolismo , Aromatizantes/metabolismo , Norisoprenoides/biossíntese , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Daucus carota/genética , Daucus carota/metabolismo , Dioxigenases/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
19.
BMC Genomics ; 14: 168, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23496978

RESUMO

BACKGROUND: The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. RESULTS: More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). CONCLUSION: This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum.


Assuntos
Regulação Fúngica da Expressão Gênica , Metschnikowia/genética , Doenças das Plantas/genética , Citrus paradisi/química , Citrus paradisi/genética , Frutas/genética , Frutas/microbiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Metschnikowia/metabolismo , Penicillium/genética , Penicillium/patogenicidade , Doenças das Plantas/microbiologia
20.
Mol Plant Pathol ; 13(4): 338-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22017757

RESUMO

To gain a better understanding of the molecular changes taking place in citrus fruit tissue following the application of the yeast biocontrol agent Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. Using a cut-off of P < 0.05 and a 1.5-fold change difference as biologically significant, the data indicated that 1007 putative unigenes showed significant expression changes following wounding and yeast application relative to wounded controls. Microarray results of selected genes were validated by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The data indicated that yeast application induced the expression of the genes encoding Respiratory burst oxidase (Rbo), mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK), G-proteins, chitinase (CHI), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and 4-coumarate-CoA ligase (4CL). In contrast, three genes, peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), were down-regulated in grapefruit peel tissue treated with yeast cells. Moreover, suppression was correlated with significantly higher levels of hydrogen peroxide, superoxide anion and hydroxyl radical production in yeast-treated surface wounds. Interestingly, large amounts of hydrogen peroxide were detected inside yeast cells recovered from wounded fruit tissue, indicating the ability of the yeast to activate reactive oxygen species when it is in contact with plant tissue. This study provides the first global picture of gene expression changes in grapefruit in response to the yeast antagonist M. fructicola.


Assuntos
Citrus paradisi/genética , Citrus paradisi/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metschnikowia/fisiologia , Controle Biológico de Vetores , Citrus paradisi/imunologia , Citrus paradisi/fisiologia , Análise por Conglomerados , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Metschnikowia/citologia , Metschnikowia/metabolismo , Microscopia Confocal , Especificidade de Órgãos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Estresse Fisiológico/genética , Superóxidos/metabolismo , Fatores de Tempo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...