Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107845, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118307

RESUMO

Utilizing digital healthcare services for patients who use wheelchairs is a vital and effective means to enhance their healthcare. Digital healthcare integrates various healthcare facilities, including local laboratories and centralized hospitals, to provide healthcare services for individuals in wheelchairs. In digital healthcare, the Internet of Medical Things (IoMT) allows local wheelchairs to connect with remote digital healthcare services and generate sensors from wheelchairs to monitor and process healthcare. Recently, it has been observed that wheelchair patients, when older than thirty, suffer from high blood pressure, heart disease, body glucose, and others due to less activity because of their disabilities. However, existing wheelchair IoMT applications are straightforward and do not consider the healthcare of wheelchair patients with their diseases during their disabilities. This paper presents a novel digital healthcare framework for patients with disabilities based on deep-federated learning schemes. In the proposed framework, we offer the federated learning deep convolutional neural network schemes (FL-DCNNS) that consist of different sub-schemes. The offloading scheme collects the sensors from integrated wheelchair bio-sensors as smartwatches such as blood pressure, heartbeat, body glucose, and oxygen. The smartwatches worked with wearable devices for disabled patients in our framework. We present the federated learning-enabled laboratories for data training and share the updated weights with the data security to the centralized node for decision and prediction. We present the decision forest for centralized healthcare nodes to decide on aggregation with the different constraints: cost, energy, time, and accuracy. We implemented a deep CNN scheme in each laboratory to train and validate the model locally on the node with the consideration of resources. Simulation results show that FL-DCNNS obtained the optimal results on the sensor data and minimized the energy by 25%, time 19%, cost 28%, and improved the accuracy of disease prediction by 99% as compared to existing digital healthcare schemes for wheelchair patients.


Assuntos
Pessoas com Deficiência , Instalações de Saúde , Humanos , Hospitais , Laboratórios , Glucose
2.
Comput Biol Med ; 166: 107539, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804778

RESUMO

The incidence of Autism Spectrum Disorder (ASD) among children, attributed to genetics and environmental factors, has been increasing daily. ASD is a non-curable neurodevelopmental disorder that affects children's communication, behavior, social interaction, and learning skills. While machine learning has been employed for ASD detection in children, existing ASD frameworks offer limited services to monitor and improve the health of ASD patients. This paper presents a complex and efficient ASD framework with comprehensive services to enhance the results of existing ASD frameworks. Our proposed approach is the Federated Learning-enabled CNN-LSTM (FCNN-LSTM) scheme, designed for ASD detection in children using multimodal datasets. The ASD framework is built in a distributed computing environment where different ASD laboratories are connected to the central hospital. The FCNN-LSTM scheme enables local laboratories to train and validate different datasets, including Ages and Stages Questionnaires (ASQ), Facial Communication and Symbolic Behavior Scales (CSBS) Dataset, Parents Evaluate Developmental Status (PEDS), Modified Checklist for Autism in Toddlers (M-CHAT), and Screening Tool for Autism in Toddlers and Children (STAT) datasets, on different computing laboratories. To ensure the security of patient data, we have implemented a security mechanism based on advanced standard encryption (AES) within the federated learning environment. This mechanism allows all laboratories to offload and download data securely. We integrate all trained datasets into the aggregated nodes and make the final decision for ASD patients based on the decision process tree. Additionally, we have designed various Internet of Things (IoT) applications to improve the efficiency of ASD patients and achieve more optimal learning results. Simulation results demonstrate that our proposed framework achieves an ASD detection accuracy of approximately 99% compared to all existing ASD frameworks.

3.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850955

RESUMO

Since the advent of visual sensors, smart cities have generated massive surveillance video data, which can be intelligently inspected to detect anomalies. Computer vision-based automated anomaly detection techniques replace human intervention to secure video surveillance applications in place from traditional video surveillance systems that rely on human involvement for anomaly detection, which is tedious and inaccurate. Due to the diverse nature of anomalous events and their complexity, it is however, very challenging to detect them automatically in a real-world scenario. By using Artificial Intelligence of Things (AIoT), this research work presents an efficient and robust framework for detecting anomalies in surveillance large video data. A hybrid model integrating 2D-CNN and ESN are proposed in this research study for smart surveillance, which is an important application of AIoT. The CNN is used as feature extractor from input videos which are then inputted to autoencoder for feature refinement followed by ESN for sequence learning and anomalous events detection. The proposed model is lightweight and implemented over edge devices to ensure their capability and applicability over AIoT environments in a smart city. The proposed model significantly enhanced performance using challenging surveillance datasets compared to other methods.

4.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808425

RESUMO

The Internet of Things (IoT) supports human endeavors by creating smart environments. Although the IoT has enabled many human comforts and enhanced business opportunities, it has also opened the door to intruders or attackers who can exploit the technology, either through attacks or by eluding it. Hence, security and privacy are the key concerns for IoT networks. To date, numerous intrusion detection systems (IDS) have been designed for IoT networks, using various optimization techniques. However, with the increase in data dimensionality, the search space has expanded dramatically, thereby posing significant challenges to optimization methods, including particle swarm optimization (PSO). In light of these challenges, this paper proposes a method called improved dynamic sticky binary particle swarm optimization (IDSBPSO) for feature selection, introducing a dynamic search space reduction strategy and a number of dynamic parameters to enhance the searchability of sticky binary particle swarm optimization (SBPSO). Through this approach, an IDS was designed to detect malicious data traffic in IoT networks. The proposed model was evaluated using two IoT network datasets: IoTID20 and UNSW-NB15. It was observed that in most cases, IDSBPSO obtained either higher or similar accuracy even with less number of features. Moreover, IDSBPSO substantially reduced computational cost and prediction time, compared with conventional PSO-based feature selection methods.


Assuntos
Internet das Coisas , Algoritmos , Humanos
5.
Healthcare (Basel) ; 9(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356232

RESUMO

Introduction: Design thinking, an innovative problem-solving approach, has gained wide popularity in healthcare disciplines. The aim of this work is to improve outpatients' experiences in hospital pharmacies in two hospitals in Asir region, Saudi Arabia. Methods: The design thinking approach, adopted from Stanford University's D-School, was used in this study. Results: Several problems were identified: lack of comfortable environment in the pharmacies' waiting area, lack of a queue management system, and workflow inefficiencies related to ordering and supplies of medicines. A prototype was proposed to overcome these challenges. Discussion and Conclusion: The design thinking approach helped in identifying end-user (patients visiting outpatient pharmacies) values and desires and provided an understanding of their struggles. It also proposed tailored solutions that could improve patients' experiences while using the services of the outpatient pharmacies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA