Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063737

RESUMO

Analyzing acetone in the exhaled breath as a biomarker has proved to be a non-invasive method to detect diabetes in humans with good accuracy. In this work, a Bi-gallate MOF doped into a chitosan (CS) matrix containing an ionic liquid (IL) was fabricated to detect acetone gas with a low detection limit of 10 ppm at an operating temperature of 60 °C and 5 V operating bias. The sensor recorded the highest response to acetone in comparison to other test gases, proving its high selectivity along with long-term stability and repeatability. The sensor also exhibited ultra-fast response and recovery times of 15 ± 0.25 s and 3 ± 0.1 s, respectively. Moreover, the sensor membrane also exhibited flexibility and ease of fabrication, making it ideal to be employed as a real-time breath analyzer.

2.
Inorg Chem ; 62(38): 15550-15564, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37698585

RESUMO

A novel cobalt hydrogen-bonded organic framework (Co-HOF, C24H14CoN4O8) was synthesized from a mixed linker, that is, 2,5-pyridinedicarboxylic acid (PDC) and 2,2'-bipyridyl (BPY) linkers and cobalt ion through a simple, one-pot, low-cost, and scalable solvothermal method. The Co-HOF was fully characterized using several analytical and spectroscopic techniques including single-crystal X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy. The Co-HOF exhibits high thermal and chemical stabilities compared to previously reported HOF materials. Moreover, Co-HOF shows excellent photocatalytic activity under visible light irradiation due to its narrow band gap of 2.05 eV. The cycloaddition reaction of CO2 to variable epoxides was investigated to evaluate the photocatalytic performance of Co-HOF under visible light radiation and was found to produce the corresponding cyclic carbonates in yields up to 99.9%.

3.
Dalton Trans ; 52(24): 8473-8487, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37282596

RESUMO

Two new isostructural carboxylate-bridged lanthanide ribbons having the chemical formula [Ln2(4-ABA)6]n [4-ABA = 4-aminobenzoate, Ln: holmium (Ho) and erbium (Er)] were synthesized by a solvothermal method and fully characterized using multiple analytical, spectroscopic, and computational techniques. Single-crystal X-ray diffraction analysis reveals that both lanthanide coordination polymers (Ln-CPs) exhibit linear ribbon-like structures built up by dinuclear Ln2(4-ABA)6 units and bridged by carboxylate groups. Ln-CPs showed remarkably high thermal and chemical stabilities. Ho-CP and Er-CP exhibited similar band gaps of 3.21 eV and 3.22 eV, respectively, showing their photocatalytic ability under UV light. The photocatalytic activities of Ln-CPs were examined in the CO2 cycloaddition of epoxides to cyclic carbonates under solvent-free conditions, and full conversion (yields up to 99.9%) to the product was achieved. Ln-CP photocatalysts retained the same product yields over five consecutive cycles. Additionally, the experimental magnetic studies indicated that both Ln-CP crystals are antiferromagnetic at low T, which is confirmed by density functional theory calculations.

4.
Membranes (Basel) ; 13(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984720

RESUMO

Developing new materials for energy and environment-related applications is a critical research field. In this context, organic and metal-organic framework (MOF) materials are a promising solution for sensing hazardous gases and saving energy. Herein, a flexible membrane of the zeolitic imidazole framework (ZIF-67) mixed with a conductivity-controlled chitosan polymer was fabricated for detecting hydrogen sulfide (H2S) gas at room temperature (RT). The developed sensing device remarkably enhances the detection signal of 15 ppm of H2S gas at RT (23 °C). The response recorded is significantly higher than previously reported values. The optimization of the membrane doping percentage achieved exemplary results with respect to long-term stability, repeatability, and selectivity of the target gas among an array of several gases. The fabricated gas sensor has a fast response and a recovery time of 39 s and 142 s, respectively, for 15 ppm of H2S gas at RT. While the developed sensing device operates at RT and uses low bias voltage (0.5 V), the requirement for an additional heating element has been eliminated and the necessity for external energy is minimized. These novel features of the developed sensing device could be utilized for the real-time detection of harmful gases for a healthy and clean environment.

5.
Sci Rep ; 12(1): 18812, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335280

RESUMO

Two lanthanide metal-organic frameworks [Ln-MOFs, Ln = Eu(III), Tb(III)] composed of oxalic acid and Ln building units were hydrothermally synthesized and fully characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Furthermore, their magnetic susceptibility measurements were obtained using SQUID based vibrating sample magnetometer (MPMS 3, Quantum Design). Both Ln-MOFs exhibited highly efficient luminescent property. Solid-state photoluminescence (PL) measurements revealed phosphorescence emission bands of Eu-MOF and Tb-MOF centered at 618 nm (red emission) and 550 nm (green emission) upon excitation at 396 nm and 285 nm, respectively. Eu-MOF and Tb-MOF displayed a phosphorescence quantum yield of 53% and 40%, respectively. Time-resolved PL analyses showed very long lifetime values, at 600 and 1065 ± 1 µs for Eu-MOF and Tb-MOF, respectively. Calculations performed by density functional theory indicated a charge transfer form metal centres to the ligand which was in good agreement with the experimental studies. Therefore, this new mode of highly photoluminescent MOF materials is studied for the first time which paves the way for better understanding of these systems for potential applications.

6.
ACS Omega ; 7(41): 36689-36696, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278051

RESUMO

Selective aerobic oxidation of benzylamine to N,N-benzylidenebenzylamine was achieved using a bismuth ellagate (Bi-ellagate) metal-organic framework (MOF) under simulated visible light irradiation. The bismuth ellagate photocatalyst was characterized using several spectroscopic techniques: powder X-ray diffraction (PXRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and nitrogen sorption measurements. Product formation was confirmed using 1H-NMR, 13C-NMR, and FTIR. The photocatalytic performance of Bi-ellagate was studied for the first time, which exhibits a band gap value of 2.62 eV, endowing it with a high photocatalytic activity under visible light irradiation. The reaction product, N,N-benzylidenebenzylamine, was selectively obtained with a high conversion yield of ∼96% under solvent-free conditions compared to other control experiments. The Bi-ellagate photocatalyst was recovered and reused four times without any significant loss in its activity, which provides an eco-friendly, low-cost, recyclable, and efficient photocatalyst for potential photocatalytic applications.

7.
ACS Omega ; 7(11): 9958-9963, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350318

RESUMO

A novel manganese metal-organic framework (Mn-MOF) termed UAEU-50 assembled from a benzenedicarboxylate linker (BDC) and trinuclear manganese clusters was synthesized and fully characterized using different spectroscopic and analytic techniques (e.g., X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). UAEU-50 adopted a hexagonal layer structure and exhibited superior thermal stability and robust chemical stability. Photocatalytic activities of UAEU-50 were investigated using the cycloaddition of CO2 to different epoxides, forming cyclic carbonates. Impressively, UAEU-50 can transform up to 90% photocatalytic CO2 conversion to cyclic carbonates in the visible-light region at ambient conditions.

8.
Mikrochim Acta ; 187(7): 386, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32535720

RESUMO

A host-guest complex of 6-mercaptonicotinic acid (MNA) and cucurbit[7]uril (CB7) was prepared and conjugated to γ-Fe3O4 nanoparticles (NPs) to detect toxic cadmium ions in water as a solid-state sensor. The formation of an inclusion host-guest complex with CB7 was confirmed by UV-vis absorption and proton NMR spectroscopy. CB7 preferentially binds the protonated MNA form compared to the neutral form, demonstrated by a binding constant for the protonated form that is four orders of magnitude higher than that of the neutral form. An increase in the pKa of MNA by 1.2 units was demonstrated after the addition of CB7, which further supports preferential binding between MNA and CB7. The NMR results confirm binding to cadmium via the carboxylic acid moiety. Stationary and time-resolved fluorescence results, in solution and in the solid state, indicate that cadmium and CB7 cause a blue shift in the MNA emission bands and extend its excited-state lifetime due to dissociation of the MNA dimer. In the solid state, switching the emission signals between Cd2+-MNA/CB7NPs (ON state) and MNAH+/CB7NPs (OFF state) was achieved by controlling the pH. An efficient, regenerable, and stable sensor device was fabricated for sensitive and selective detection of Cd2+ in contaminated water samples. Graphical abstract Regeneration of MNA/CB7 nanoparticles for the detection of cadmium ions in the solid state by a visible blue emission signal upon suppression of photoinduced electron transfer (PET).

9.
Front Chem ; 7: 561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440500

RESUMO

A dye-sensitized solar cell was constructed on the basis of encapsulating the ruthenium polypyridyl photosensitizer Z907 in the macrocycle cucurbit[7]uril (CB7). The work focuses on the photophysical properties of the new host-guest complexes in acetonitrile and water (volume ratio 1:9) and on the top of nanocrystalline titanium dioxide (TiO2) electrode prior to the addition of poly(3-hexylthiophene) polymer and gold electrode. Complexation to CB7 in aqueous solutions has decreased the emission intensity and excited-state lifetime for metal-to-ligand charge transfer (MLCT) state at 650 nm by twofold because of collisional quenching, which opens a non-radiative deactivation channel. Similarly, a twofold decrease in the emission intensity and excited-state lifetime of MLCT at 750 nm on the top of TiO2 electrodes was observed with the addition of CB7. Encapsulation of Z907 dye to CB7 host has, also, led to fourfold enhancement in the short circuit current and power conversion efficiency of the final solar cell. The results support the premise that host-guest complexation of CB7 facilitates faster electron injection from Z907 dye into the conduction band of TiO2 electrodes.

10.
ACS Omega ; 4(1): 953-960, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459370

RESUMO

Aimed at further exploring the hosting properties of cucurbit[7]uril (CB7), we have exploited the spectroscopic and photophysical properties of a known fluorescent label as the guest molecule, namely, 3-cyano-6-(2-thienyl)-4-trifluoromethyl pyridine (TFP), in neat solvents. The formation of an inclusion host-guest complex with CB7 was checked by UV-vis absorption spectroscopy, and the value of binding constant (9.7 × 105 M-1) was extracted from the spectrophotometric data. The modulation of keto-enol equilibrium in TFP by the local environment is governed by the interplay between dimerization through intermolecular hydrogen bonding between individual solute molecules, favoring the enol form, and intermolecular hydrogen bonding between TFP and the surrounding solvents, favoring the keto form. Time-resolved fluorescence results established that the macromolecular CB7 host stabilizes preferentially the neutral enol form over the keto form of TFP. Unprecedentedly, our results reveal a linear dependence of the amplitudes of the extracted decay-associated spectra from the time-resolved fluorescence spectra of TFP on the sum of polarity/polarizability and hydrogen bonding parameters of the local environment, confirming that TFP at micromolar concentration in the CB7 complexes is experiencing a methanol-like environment. The results rationalized the 42-fold enhancement in the solubility of TFP in water media by complexation in CB7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...