Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 823: 153554, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131242

RESUMO

Previous studies have reported increased aquatic toxicity of UV-degraded nitroguanidine (NQ), but many details underlying the dynamics of NQ degradation and toxicity remain unknown. These data gaps represent critical barriers to assessing the environmental relevance of laboratory-generated UV-degradation results and extrapolation to environmental risk. In the present study, the toxicity of NQ increased with increasing proportional degradation of the parent compound. Specifically, while the LC50 of undegraded NQ was 1485 mg/L, the toxicity at the lowest degradation level examined (7% parent compound degraded) increased by nearly two-orders of magnitude (LC50 = 17.3 mg/L) and increased by nearly three-orders of magnitude (LC50 = 6.23 mg/L) in the highest percent NQ degradation (90%) treatment. Similar LC50 values between immediately tested and aged (8-13 days) NQ degradation products suggested the degradation product(s) causing the toxicity were stable, although concentrations of nitrite and nitrate increased after aging. Finally, experiments where NQ was degraded in natural sunlight confirmed increased toxicity in environmentally relevant D. pulex exposures; however, the two-order of magnitude increase in toxicity (LC50 = 21.3 mg/L) at 53% degradation was less than NQ degraded by a laboratory photoreactor by a similar percentage (46% degraded). Identification of principal toxic agents in the UV-degraded NQ product mixture remains a critical data gap. Mass balance calculations were generated for our experimental results and literature values revealing difficulty in accounting for all NQ degradation products. Products with suspected high potency in D. pulex were identified which require further testing including: nitrosoguanidine, nitrosourea, and hydroxylamine. SYNOPSIS: The toxicity of NQ increased with increasing UV-degradation where toxicity-inducing degradation products were stable over 1-2 weeks; increased toxicity was validated from natural-sunlight degradation of NQ, however toxicity was lower than UV-photoreactor degraded NQ; and the identity of specific toxic UV-degradation products remains elusive where carefully-designed mass-balance experiments and toxicity testing are needed to provide definitive identification.


Assuntos
Guanidinas , Poluentes Químicos da Água , Guanidinas/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
3.
Toxicol Ind Health ; 35(7): 457-465, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31364504

RESUMO

Solar ultraviolet (UV) radiation is the main factor of photocarcinogenesis, photoaging, and photosensitivity; thus protection from biological damaging UV radiation is a concern. Sunscreens containing UV filters are the most preferred means of photoprotection but the safety and efficacy of UV filters are in question. Benzophenone (BP) and its derivatives, namely, benzophenone 1 (BP1), is commonly used in sunscreens as a UV blocker. The aim of this study was to assess the effects of BP and BP1 on the differential expression of proteins in human keratinocytes (HaCaT cells) under exposure to ultraviolet A radiation. Photosensitive proteins were screened from HaCaT cells by two-dimensional (2-D) gel electrophoresis, and identification of these differentially expressed proteins was performed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF)/TOF mass spectrometry. Protein identification was performed using the search program MASCOT and a database made of SUMO and GhJMJ12 amino acid sequences. Our results showed that the proteins involved directly or indirectly in apoptosis are 70 kDa heat shock protein, long-chain specific acyl-CoA dehydrogenase, serine/threonine-protein kinase, and FAM78A protein, which were upregulated in comparison to control HaCaT cells. The expressions of binding immunoglobulin protein, podocalyxin-like protein, actin, cytoplasmic, and calreticulin precursors were downregulated. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity and genotoxicity of BPs. The results of 2-D gel electrophoresis followed by mass spectrometry showed expression of novel proteins involved in promoting or initiating apoptotic pathways. Hence, we conclude that BPs should be avoided as a UV blocker from sunscreens because of its potential to promote apoptotic proteins in human skin keratinocytes.


Assuntos
Benzofenonas/farmacologia , Queratinócitos/efeitos dos fármacos , Protetores Solares/farmacologia , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Biomarcadores , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Regul Toxicol Pharmacol ; 95: 298-306, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626563

RESUMO

Benzophenone-2 (BP2), a common ingredient of sunscreens formulation is widely used as UV filter. We have assessed the photogenotoxic and photocytotoxic potential of BP2. Photostability test showed that BP2 is unstable under UV exposure. Cell proliferation assay revealed that viability of HaCaT cells significantly reduced under UVA, UVB and sunlight exposure. DCF fluorescence intensity proved intracellular ROS generation capacity of BP2 under sunlight, UVA and UVB irradiation. Photodynamic degradation of guanine base of DNA is promoted by BP2 under UV treatment. Genotoxicity assessed by comet assay, showed that photosensitized BP2 enhanced DNA damage, which is measured in term of % tail DNA and olive tail moment. Genotoxic potential of BP2 was further validated with photomicronuclei assay. Photogenotoxicity of BP2 was lastly confirmed by formation of CPDs (Cyclo butane pyrimidine dimmers). DNA damage induced by BP2 was irreversible and extended incubation periods (6-12 h) not favored the recovery from damaged DNA. JC 1 staining showed significant reduction in mitochondrial membrane potential. Membrane integrity compromisation of HaCaT cells was established by AO (Acridine orange), EtBr (Ethidium bromide) staining and confirmed with sub G1 population of cell cycle. Thus, results suggest that BP2 should be avoided in topical application for safe sunscreen practices.


Assuntos
Benzofenonas/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ensaio Cometa , Dano ao DNA , Humanos , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Int J Pharm ; 541(1-2): 173-187, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29462686

RESUMO

Sparfloxacin (SPFX) is a broad spectrum antibiotic which inhibits bacterial DNA gyrase enzyme activity. However, photodegradation in the presence of UVA limits its antibacterial activity and induces phototoxicity. Thus, to encounter this problem, we have developed poly d,l-lactic-co-glycolic acid (PLGA) loaded SPFX nanoparticles. Here, we have performed a comparative antibacterial activity of SPFX and its nanoparticles (NPs) through molecular docking and plate sensitivity assay. Under environmental UVA exposure, photoexcited SPFX significantly generates ROS, DNA damage and mitochondrial mediated cell death in comparison to PLGA-SPFX-NPs (nano SPFX) in human skin cell line (HaCaT). In presence of UVA, bulk SPFX induced cell cycle arrest with appearance of sub-G1 peak showing apoptosis while nano SPFX did not show any change. SPFX triggered apoptosis via alteration in membrane integrity of mitochondria and lysosome in comparison to PLGA-SPFX-NPs. Involvement of mitochondrial mediated cell death was confirmed by down-regulation of anti-apoptotic Bcl-2 and procaspase-3 and upregulation of pro-apoptotic Bax, cytochrome-c and caspase-3 proteins expression. Specific caspase inhibitor, Z-VAD-FMK showed involvement of caspase cascade pathway in apoptosis. Our finding suggests that controlled release of SPFX from PLGA-SPFX-NPs can reduce its side effects and enhance its antibacterial activity. Thus, nanotization of fluoroquinolones will be a significant step to reduce the problem of resistance and phototoxicity of this group.


Assuntos
Antibacterianos/farmacologia , Composição de Medicamentos/métodos , Fluoroquinolonas/farmacologia , Ácido Láctico/química , Fotólise/efeitos da radiação , Ácido Poliglicólico/química , Antibacterianos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Portadores de Fármacos/química , Estabilidade de Medicamentos , Fluoroquinolonas/química , Humanos , Queratinócitos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
10.
J Photochem Photobiol B ; 161: 284-94, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27288659

RESUMO

Phloxine B (PhB) is a most commonly used dye in cosmetic products throughout the world. It shows an absorption in visible and ultraviolet radiations. PhB was photodegraded within 4h of UV exposure. It generates reactive oxygen species (ROS) photochemically and intracellularly. Photosensitized PhB caused dose dependent cell viability reduction of human keratinocyte cell line (HaCaT) which was measured through MTT (75.4%) and NRU (77.3%) assays. It also induces cell cycle arrest and DNA damage. Photosensitized PhB induces Ca(2+) release from endoplasmic reticulum (ER). It causes the upregulation of ER stress marker genes ATF6 (1.79 fold) and CHOP (1.93 fold) at transcription levels. The similar response of ATF6 (3.6 fold) and CHOP (2.38 fold) proteins was recorded at translation levels. CHOP targeted the mitochondria and reduced the mitochondrial membrane potential analyzed through JC-1 staining. It further increases Bax/Bcl2 ratio (3.58 fold) and promotes the release of cytochrome c, finally leads to caspase-dependent apoptosis. Upregulation of APAF1 (1.79 fold) in PhB treated cells under UV B exposure supports the mitochondrial-mediated apoptotic cell death. The results support the involvement of ER and mitochondria in ROS mediated PhB phototoxicity. Therefore, the use of PhB in cosmetic products may be deleterious to users during sunlight exposure.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Azul de Eosina I/toxicidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Fator 6 Ativador da Transcrição/metabolismo , Apoptose/efeitos da radiação , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Citocromos c/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Estresse do Retículo Endoplasmático/efeitos da radiação , Azul de Eosina I/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Fotólise/efeitos da radiação , Proibitinas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Dímeros de Pirimidina/análise , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
11.
Toxicol Appl Pharmacol ; 297: 12-21, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933830

RESUMO

The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. The role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles.


Assuntos
Aminopiridinas , Tinturas para Cabelo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mutagênicos , Raios Ultravioleta , Aminopiridinas/efeitos da radiação , Aminopiridinas/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Tinturas para Cabelo/efeitos da radiação , Tinturas para Cabelo/toxicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mutagênicos/efeitos da radiação , Mutagênicos/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Toxicol Lett ; 239(3): 182-93, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26440554

RESUMO

Solar UV radiation is main factor of photocarcinogenesis, photoageing, and phototoxicity; thus, protection from UV radiation is major concern. Sunscreens containing UV filters are suggested as sun safe practices, but safety of UV filters remains in controversies. Benzophenone-1 (BP1) is commonly used in sunscreens as UV blocker. We assessed the photogenotoxicity and apoptotic parameters in human keratinocytes (HaCaT cells) by western blot, immunocytochemistry, flowcytometry, comet assay and TEM imaging. Our results exposed that BP1 photosensitized and generated intracellular ROS (2.02 folds) under sunlight/UVR. Decrease in cell viability was recorded as 80.06%, 60.98% and 56.24% under sunlight, UVA and UVB, respectively. Genotoxic potential of BP1 was confirmed through photomicronuclei and CPDs formation. BP1 enhanced lipid peroxidation and leakage of LDH enzyme (61.7%). Apoptotic cells were detected by AnnexinV/PI staining and sub G1 population of cell cycle. BP1 induced up regulation of apoptotic proteins Bax/Bcl2 ratio, Apaf-1, cytochrome c, Smac/DIABLO and cleaved caspase 3 was noticed. Down regulation of pro caspase 3 was inhibited by Z-VAD-fmk (inhibitor of caspase). Thus, study established the involvement of BP1 in photogenotoxicity and apoptosis via release of cytochrome c and Smac/DIABLO. These findings suggest sunscreen user to avoid BP1 in cosmetics preparation for its topical application.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenonas/toxicidade , Citocromos c/metabolismo , Dano ao DNA/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Raios Ultravioleta/efeitos adversos , Clorometilcetonas de Aminoácidos/farmacologia , Anexina A5/metabolismo , Proteínas Reguladoras de Apoptose , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Ensaio Cometa , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Protetores Solares/química , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
13.
J Hazard Mater ; 300: 415-425, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223015

RESUMO

Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Catepsina B/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Fenilenodiaminas/farmacologia , Antioxidantes/análise , Antioxidantes/metabolismo , Catepsina B/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Lisossomos/efeitos dos fármacos , Lisossomos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes para Micronúcleos , Espécies Reativas de Oxigênio/análise , Raios Ultravioleta
14.
Toxicol Lett ; 235(2): 84-95, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25800561

RESUMO

Sunscreen users have been increased, since excessive sun exposure increased the risk of skin diseases. Benzophenone (BP) and its derivatives are commonly used in sunscreens as UV blocker. Its photosafety is concern for human health. Our study showed the role of type-I and type-II radicals in activation of caspase 3 and phototoxicity of BP under sunlight/UV radiation. BP photodegraded and formed two photoproducts. BP generates reactive oxygen species (ROS) singlet oxygen ((1)O2), superoxide anion (O2˙(-)) and hydroxyl radical (˙OH) through type-I and type-II photodynamic mechanisms. Photocytotoxicity significantly reduced cell viability under sunlight, UVB and UVA. DCF fluorescence confirmed intracellular ROS generation. BP showed single strand DNA breakage, further proved by cyclobutane pyrimidine dimmers (CPDs) formation. Lipid peroxidation and LDH leakage were enhanced by BP. P21 dependent cell cycle study showed sub G1 population which advocates apoptotic cell death, confirmed through AO/EB and annexin V/PI staining. BP decreased mitochondrial membrane potential, death protein released and activated caspase. We proposed cytochrome c regulated caspase 3 dependent apoptosis in HaCaT cell line through down regulation of Bcl2/Bax ratio. Phototoxicity potential of its photoproducts is essential to understand its total environmental fate. Hence, we conclude that BP may replace from cosmetics preparation of topical application.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenonas/toxicidade , Caspase 3/metabolismo , Quebras de DNA de Cadeia Simples , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Protetores Solares/toxicidade , Apoptose/efeitos da radiação , Benzofenonas/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Radical Hidroxila/metabolismo , Queratinócitos/enzimologia , Queratinócitos/patologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fotólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Medição de Risco , Transdução de Sinais , Protetores Solares/efeitos da radiação , Superóxidos/metabolismo , Raios Ultravioleta , Proteína X Associada a bcl-2/metabolismo
15.
Toxicology ; 314(2-3): 229-37, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128752

RESUMO

Ketoprofen (KP) is a widely used nonsteroidal anti-inflammatory drug for the treatment of osteoarthritis and various rheumatic diseases. Currently, KP is applied topically on skin as gel to treat symptoms of pain and inflammation. We have studied the photomodification of KP under natural environmental conditions. KP generates reactive oxygen species (ROS) like ¹O2 through Type-II photodynamic reaction. ¹O2 mediated 2'-dGuO photodegradation, single and double strand breakage were significantly induced by photosensitized KP under sunlight/UV-R exposure. Significant intracellular ROS generation was measured through DCF-DA fluorescence. Linoleic acid photoperoxidation and role of ¹O2 were substantiated by using specific quencher like sodium azide. KP induced cell cycle arrest in G2/M phase and cell death through MTT assay. We found apoptosis as the pattern of cell death which was confirmed through caspase-3 activation, cytochrome-c release from mitochondria, up-regulation of Bax protein and phosphatidylserine translocation. Our RT-PCR result strongly supports our view point of apoptotic cell death through up-regulation of p21 and pro-apoptotic Bax genes expression. Mitochondrial depolarization and lysosomal destabilization were also parallel to apoptotic process. Therefore, much attention should be paid to the topical application of KP and sunlight exposure in the light of skin related photosensitivity and cancers.


Assuntos
Dano ao DNA/fisiologia , Dermatite Fototóxica/metabolismo , Cetoprofeno/toxicidade , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Oxigênio Singlete/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Lisossomos/efeitos dos fármacos , Lisossomos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Oxigênio Singlete/efeitos da radiação , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...